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Abstract— Among the many animal models of retinitis 
pigmentosa (RP), the most extensively characterized animal is 
the rd1 mouse. Recent studies showed that the 
neurophysiological properties of rd1 retinas differ significantly 
from those of normal retina; the presence of an oscillatory 
rhythmic activity (~10 Hz) both in retinal ganglion cell (RGC) 
spikes and field potentials (slow wave component, SWC). 
However, lesser studies have been done regarding electrical 
characteristics of rd10 retina, carrying the mutation of same 
rod-PDE gene and showing a later onset degeneration of 
photoreceptors. Therefore, in this study, we compared the 
oscillatory rhythm in RGC spike and SWC between rd1 and 
rd10 mice in different postnatal ages to understand neural code 
used by two diseased retinas to communicate with the brain. 
Extracellular action potentials are recorded by 8 × 8 MEA from 
the RGC in the in vitro whole mount retina. 4 and 8 weeks in rd1 
mice and 4, 10, 15, and 20 weeks in rd10 mice were used (n=3 for 
each postnatal age). From the raw waveform of retinal 
recording, RGC Spikes and SWC were isolated by using 200 Hz 
high-pass filter and 20 Hz low-pass filter, respectively. Fourier 
transform was performed for detection of oscillatory rhythm in 
RGC spikes and SWC. In rd1 mice, there is no statistical 
difference between the frequency of SWC and spike in 4 weeks 
[p>0.05; spike 9.3 ± 0.9 Hz (n=40), SWC 9.3 ± 1.5 Hz (n=25)] and 
8 weeks [p>0.05; spike 10.0 ± 1.3 Hz (n=87), SWC 10.9 ± 1.7 Hz 
(n=25)]. While in rd10 mice there is no statistical differences 
among the SWC through 4 ~ 20 weeks, significant differences 
were observed between the frequency of RGC spike and SWC 
and also among RGC spikes [4 weeks (p<0.001): spike 5.5 ± 1.3 
Hz (n=59), SWC 10.8 ± 3.1 Hz (n=14); 10 weeks (p<0.001): spike 
6.8 ± 3.8 Hz (n=79), SWC 10.3 ± 2.6 Hz (n=25); 15 weeks 
(p<0.05): spike 3.9 ± 0.7 Hz (n=33), SWC 9.9 ± 1.2 Hz (n=25); 20 
weeks (p<0.05): spike 4.4 ± 1.2 Hz (n=53), SWC 9.8 ± 1.2 Hz 
(n=25)]. 
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I. INTRODUCTION 
ETINAL prostheses are being developed to restore 
vision for the blind with retinal diseases such as retinitis 
pigmentosa (RP) or age-related macular degeneration 

(AMD) [1]-[3]. While the retinal degenerations result in 
photoreceptor loss, significant numbers of bipolar and 
ganglion cells remain for many years. The preservation of the 
remaining neural network in patients with RP and AMD 
provides the opportunity to restore vision by means of an 
electronic retinal prosthesis. 

Among the many animal models of RP, the most 
extensively characterized animal is the rd1 (formerly rd, now 
Pde6brd1) mouse [4]. A major limitation of this mutant is that 
rod photoreceptor degeneration begins before normal 
synaptogenesis is complete [5]. This fact makes it difficult to 
distinguish the cause of blindness resulting from rod 
degeneration or from abnormal synaptic formation.  

The more recently identified Pde6brd10 (rd10) mouse, 
which carries a mis-sense mutation in the same gene, has a 
later onset and slower rate of photoreceptor degeneration than 
the rd1 mouse [10]. The slower degenerative time course 
makes rd10 a more appropriate model of human RP, and 
presents a broader window of opportunity to test therapies for 
photoreceptor rescue [7]-[8].  

In recent studies including ours using rd1 mice, it is known 
that the neurophysiological properties of photoreceptor 
degenerated retinas differ significantly from those of normal 
retina [9]-[12]. The most significant alteration of spontaneous 
activities of retinal networks in rd1 mice is the presence of an 
oscillatory rhythmic activity with ~10 Hz frequency both in 
RGC spikes and field potentials [11]-[12]. We named 
oscillatory rhythm in field potential as slow wave component 
(SWC) and we proposed the mechanism of this SWC as 
postsynaptic potential [12]. However, only few studies have 
been done regarding electrical characteristics of retinal 
waveform in rd10 mice, and most of them are focused on in 
vivo ERG study [13-14].  

Neuronal oscillations appear throughout the nervous 
system, in structures as diverse as the cerebral cortex, 
hippocampus, subcortical nuclei and sense organs [15]. High 
frequency oscillations (20 to 120 Hz), those generated by the 
internal dynamics of the system, have been found at all stages 
of visual processing, from the retina to the cortex [16]. 
However, ~10 Hz oscillatory rhythmic activity in adult retina 
has hardly been reported. Whether neuronal oscillations 
contribute to normal function, are merely epiphenomena, or 
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