
  

  

Abstract— An important and unresolved problem in the 

assessment of perceptual and cognitive deficits in neurological 

patients is how to choose from the many existing behavioral 

tests, a subset that is sufficient for an appropriate diagnosis. 

This problem has to be dealt with in clinical trials, as well as in 

rehabilitation settings and often even at bedside in acute care 

hospitals. The need for efficient, cost effective and accurate 

diagnostic-evaluations, in the context of clinician time 

constraints and concerns for patients’ fatigue in long testing 

sessions, make it imperative to select a set of tests that will 

provide the best classification of the patient’s deficits. However, 

the small sample size of the patient population complicates the 

selection methodology and the potential accuracy of the 

classifier.  We propose a method that allows for ordering tests 

based on having progressive increases in classification using 

cross-validation to assess the classification power of the chosen 

test set.  This method applies forward linear regression to find 

an ordering of the tests with leave-one-out cross-validation to 

quantify, without biasing to the training set, the classification 

power of the chosen tests. 

I. INTRODUCTION 

HIS paper introduces a general method for selecting and 

ordering a set of behavioral perceptual-cognitive tasks 

that can be administered in sequence to a patient for 

diagnosis with each subsequent test providing optimal 

additional classification power amongst the remaining tests.  

It is necessary to diagnose perceptual-cognitive deficits in 

neurological patients based on the results of a well-selected 

battery of quantitative tasks that is easy to administer, and 

validated in a large population. However, the amount of 

testing a patient is able to bear is variable and often times 

unknown apriori.  Thus, if a patient were unable to continue 

testing mid-battery, the set of tests completed should still 

allow for a low error rate in diagnosis with some optimality.  

Several test batteries exist for assessing a wide range of 
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neurological impairments[1-3], but they suffer from a lack of 

ordering that would allow for appropriate classification when 

only a subset of the battery is complete.  We propose a 

quantitative method that establishes a sequence of tests that 

provides optimal additional classification power per 

additional test administered. 

Our method employs forward selection to iteratively find 

tests that improve classification rate through linear 

discriminants.  Due to the large variances in patient 

performance as well as the difficulty of obtaining a 

sufficiently large number of patients, leave-one-out cross 

validation (LOOCV)[4] is used to assess the performance of 

the data.  The resulting accuracy of classification from 

LOOCV is utilized to measure the gains in classification with 

the addition of each new test dimension. 

In this paper, we use as an example dataset the patient 

results from a series of tests called the low-level visual 

motion screening battery[5]. The selected stroke patients 

from this study have completed the entire battery and are 

categorized by the anatomical locations of their lesion. For 

simplicity we only included patients with unilateral lesions.  

II. METHODS 

A. Test Selection and Ordering 

A typical method for selection of tests based on 

classification accuracy is stepwise regression.  In the case of 

requiring a set of tests with progressive improvements in 

accuracy, one way apply the forward linear regression 

procedure. Forward linear regression uses the estimated 

group covariances across a subset of tests to generate linear 

boundaries.  Initially, all tests are assessed separately and the 

one producing the greatest separation between classification 

groups is labeled as the most significant test.  Then, the 

separation is recomputed amongst the remaining tests with 

the addition of the most significant test to choose the second-

most significant test.  This procedure is repeated, while 

recomputing separation amongst each remaining test along 

with the selected significant tests, until no tests are 

remaining. 

The problem with this method is that it is susceptible to 

“Type III errors,” that is the classification accuracy is biased 

by its training data.  In other words, we may build a classifier 

that may fit all training data with 100% accuracy, but would 

not necessarily have such accuracy when tested with new 

data. Ideally, we could test with new data.  However, in our 

class of problems, we have only a small set of labeled data 
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due to the difficulty of obtaining patients for study.  Thus, 

we need to rely on cross-validation methods to test data.  

Note that since we are simply obtaining an ordering of tests, 

we simply need to know how “new” data (in this case the 

validation set) is classified based on the rules of generating 

our classifier given a subset of the tests. 

In our algorithm (see Alg 1), the classifier uses leave-one-

out cross validation (LOOCV) nested inside the forward 

selection method. Each iteration of LOOCV (step 7i) 

classifies a single subject while using the rest of the labeled 

dataset to compute the optimal classifier. With our dataset, 

we use linear discriminant analysis for our linear classifier. 

The classification error across all iterations is averaged 

together (step 7ii) to produce the error rate for the current set 

of tests.  The test with the best accuracy is added to the 

ordered set of tests (steps 7iii and 8), which is the output of 

the algorithm after all tests have been tested. 

B. Training Dataset 

The training data set consists of the result of forty-nine 

patients with a first ever unilateral, cortical infarct. The low-

level motion screening battery is used to assess deficits in 

motion processing ability. Six tests, described in the 

following section and taken from our previously published 

studies [5-19], are part of the low level visual motion battery, 

and each is administered in two conditions, ipsilesional and 

contralesional, resulting in a total of twelve tasks used in the 

analysis. The ipsilesional and contralesional conditions refer 

to the visual field in which the stimulus is presented. For 

example, ipsilesional means that the test stimuli are 

presented in the visual field on the same side as the lesion 

(i.e. left hemisphere lesion, stimuli presented in the left 

hemifield). Patients are divided into four classification 

groups based on their lesion location: Occipital-temporal, 

Occipital-parietal, Dorsal-parietal, and Frontal.  

C. Low-level Visual Motion Screening Battery 

1) Direction discrimination: All the dots in the stimulus 

moved upwards and at a variable angle to the left or right of 

true vertical (Figure 1a), which was indicated by a short 

clearly visible line placed 0.5° above the display aperture. In 

a two alternative forced choice (2AFC) procedure, subjects 

reported whether the dot-field moved to the right or to the 

left of the vertical line. Threshold was the angle at which 

performance was 79% correct. 

2) Speed discrimination: This task measured the 

perception of relative speed of two random dot 

kinematograms (RDK) which shown schematically in Figure 

1c. The RDK’s were displayed sequentially, with a 500 ms 

inter-stimulus interval. In each interval, every dot’s 

trajectory changed randomly from frame to frame, but the 

 
 

Fig. 1. The visual motion tests and results from the stroke patients 

and healthy controls. The left column of panels represents schematic 

views of the visual motion displays. (a) DDT; (c) local SDT; (e) MCT 

(translation); (g) MDT; (i) 2D-FFM; (k) MCT-radial (RM). In all the 

tests, each dot is represented as a vector indicating the magnitude and 

direction of motion. The filled circles represent signal dots (moving 

in the same direction) and the open circles represent noise dots. The 

second column of panels (b, d, f, h, j, l) represents the behavioural 

results for each test for the control subjects and each group of 

patients. Each data point represents the group mean ± SD of the 

thresholds obtained for the particular test. The open circles indicate 

the contralesional visual field and the filled circles indicate the 

ipsilesional visual field. The ‘*’ symbols illustrate instances where 

the patients performed significantly worse than control subjects. As 

there was no statistically significant difference between performance 

in the right and left visual fields of the controls, the results were 

combined. This figure and additional information can be found in 

[1]. 

 

ALGORITHM I 

TEST SELECTION AND ORDERING 

1. U ←{Set of Behavioral Tasks} 

2. V ← ∅ 

3. X ← Subject Behavioral Task Performance 

4. Y ← Subject Classification Labels 

5. T ← ∅ 

6. B ← zero [Best classification accuracy] 

7. For each test index i in U 

i. For each subject j in X 

- X{-j} ← X \ X{j} [All X excluding subject j] 

- Find Classifier F given tests V ∪ U{i} and data X{-j} 

- Classify X{j} using classifier F and compare to Y{j} 

ii. Compute accuracy A = # times correctly classified / size of X 

iii. If A > B: 

- T ← U{i} 

- B ← A 

8. V{end+1} ← T [test T is appended to the end of V] 

9. U ←U \ T [test T is removed from U] 

10. Go back to 5 until U is empty 

Algorithm 1. An algorithm for finding the optimal progressive 

ordering of behavioral tasks.  The classifier to use is generalized in 7i, 

so that any classification method can be used.  The resulting ordering 

is found in V with the first element corresponding to the first task to 

be administered to a patient, which is the test that provides the best 

classification accuracy.   
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speed was the same for all the dots. The variable was the 

ratio of speed difference between the two intervals. The 

standard speed, presented first or second at random, was 3°/s 

and the speed in the other interval varied from trial to trial, 

starting from a maximum of 6°/s (ratio = 2). In a two 

temporal alternative forced choice procedure, subjects 

reported in which interval (the first or the second) the dots 

moved faster. Threshold was the speed ratio at which 

performance was 79% correct. 

3) Motion coherence: This stimulus display, adapted from 

[20], was designed to isolate motion-sensitive mechanisms 

by using a controlled motion signal whose strength did not 

alter the average spatial and temporal structure of the 

stimulus (as adapted by [14] from [20]). The display 

(schematized in Figure 1e) consisted of stochastic RDKs in 

which a specifiable percentage of the dots had a constant 

velocity and correlated motion signal while the remainder 

moved in random directions at random speeds, providing 

masking motion noise. The strength of the motion signal was 

varied by changing the percentage of dots moving coherently 

between 0 (just noise) and 100 (all dots are signal and move 

in the same direction). In each frame, the position of the 

noise dots was random, and at 0% coherence the display 

appeared as a fluctuating pattern of spatiotemporal noise. 

The motion content of the display (direction) could be 

extracted only by integrating brief local motion signals over 

time and space[21, 22]. In a four alternative forced choice 

task, subjects reported whether the overall direction of the 

RDK was up, down, left, or right. Threshold was the 

percentage of signal dots at which direction discrimination 

(DDT) was 79% correct. 

4) Motion discontinuity: The display was an RDK with 

identical statistical properties to that described in Exp 3 

except that in half of the trials (discontinuous) an illusory 

line divided the display into two equal fields of dynamic 

random dots (Figure 1g) and the other half the trials 

(homogeneous) contained no such division. The signal dots 

moved upwards or downwards. The illusory line arose from 

the opposite direction of motion of the ‘signal’ dots within 

the two halves of the stimulus aperture. To prevent any use 

of spatial local cues, the illusory line had four possible 

orientations and the centre of the line was slightly (less than 

0.5°) and randomly offset from the centre of the stimulus 

aperture. In a 2AFC task, subjects reported whether the 

display was discontinuous or homogeneous. Threshold was 

the percentage of signal dots at which subjects could 

discriminate between the homogeneous and discontinuous 

displays at 79% correct. 

5) Two-dimensional form-from-motion: As in Exps 3 and 

4, the stimulus was an RDK of variable proportion of signal 

dots embedded in masking motion noise. A two-dimensional 

form, defined solely by the relative motion of two oppositely 

moving fields of signal dots and resulting in an illusory line 

outlining a two-dimensional form (either a ‘plus’ or a 

‘minus’, of equal areas (schematized in Figure 1i) appeared 

in the centre of the stimulus aperture. In a 2AFC task, 

subjects reported whether the two-dimensional form was a 

‘plus’ or a ‘minus’. Task difficulty was titrated by varying 

the proportion of signal dots and threshold was the 

percentage of coherently moving dots where performance 

was 79% correct. 

6) Motion coherence – radial: This task is similar to that 

of Exp 3 except that the signal dots move radially in the 

frontal plane from centre to periphery (expansion) or the 

reverse (contraction), illustrated in Figure 1k. To ensure that 

subjects perceived planar motion, all dots had an equal 

displacement at all distances from the centre, preventing the 

depth illusion that radial motion stimuli can produce. The 

proportion of dots moving coherently and radially was 

titrated as above and the subject reported whether the pattern 

was expanding or contracting. Threshold was the percentage 

of signal dots at which performance was 79% correct. 

III. RESULTS 

This method was applied to the dataset from [1] to reduce 

the number of tests required to screen a patient for visual 

motion deficits. The results of the validation test using the 

data set of the four patient groups are shown in Figure 2, 

where we have plotted the error rate as a function of the tests 

included in each step of the analysis. Each point represents 

the error rate of the classifier (1 – accuracy) at predicting the 

lesion group of each patient. The tests along the x-axis are 

ordered based on their classification result. The first test 

selected, Motion Discontinuity contralesional (MDTc), 

produced the best classification. The second iteration 

selected the Direction Discrimination contralesional (DDTc) 

to be the test that, in combination with MDTc, produced the 

best separation between groups. This process continued to 

order the remaining tests based on their contribution towards 

classification. Even in the first iteration with a single test 

included, the classifier performed better than chance with 

 
Fig. 2. Results of the classification showing the error rate as a 

function of the tests included in each step of the analysis. Each point 

represents the accuracy of the classifier at predicting the lesion group 

of each patient. The first test is that which produced the best 

classification alone. The following iteration selected the test that in 

combination with the first produced the best separation between 

groups resulting in better accuracy.patients. Each data point 

represents the classification error (which is 1 – accuracy) obtained for 

the particular test averaged over all LOOCV steps.  
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50% accuracy (out of four lesion groups) at predicting lesion 

location.  The error rate drops below 30% by 8 tests. 

The error rate increases as the number of tests is increased 

past 9 tests.  The reason for this effect is most likely due to 

the curse of dimensionality.  Adding more dimensions that 

do not provide additional information will increase the noise 

in the system, thus leading to a higher error rate.  Adding 

additional dimensions in the forward selection procedure 

likely increases the error. Thus, we can conclude that these 

additional tests do not provide any additional, useful 

information for diagnosis and we can exclude them from the 

diagnostic  battery. 

IV. CONCLUSION 

We have proposed a method for ordering a set of 

psychophysical tests by their significance in classification in 

terms of the classification error rate.  Although the dataset 

spanned low-level visual motion tasks and included only 

forty-nine patients, this method can be expanded to include 

any arbitrary family of behavioral tasks with any number of 

subjects.  The forward selection procedure grows 

quadratically in the number of tests rather than 

combinatorially as would an exhaustive search over the test 

space.  Also, the number of LOOCV iterations is 

proportional to the number of data points.  If we had a larger 

test set, we could utilize other cross-validation schemes to 

reduce computation time.  Since we are validation over a 

small population, LOOCV does not require too many 

iterations while reducing the loss of information in the 

classifier, thus better reflecting classification accuracy given 

all points. 

In the proposed method, we did not make assumptions on 

how much time each patient is allotted for performing the 

behavioral tasks.  If, however, we knew apriori that each 

patient can take a set number of tests (or be involved in 

testing for a prespecified amount of time), we could replace 

the forward linear regression step with a more complex 

stepwise regression step that attempts to find the optimal 

combination of tests for a given set size. In this case, all tests 

must be administered to the subject.  However, this 

procedure is incapable of ensuring optimality if a patient 

fails to complete the battery.  In the method discussed in this 

paper, discontinuing in the middle of the testing battery 

would still include the tests that are progressively optimal in 

improving classification. 

REFERENCES 

[1] R. J. Adams, D. E. MacNeil, C. Dove, and M. L. Courage, "Optics 

and psychophysics in a clinical setting: Success of a screening battery 

for assessing visual functioning in human infants," Journal of Vision, 

vol. 8, p. 414, May 10, 2008 2008. 

[2] T. D. Griffiths, J. L. Dean, W. Woods, A. Rees, and G. G. R. Green, 

"The Newcastle Auditory Battery (NAB). A temporal and spatial test 

battery for use on adult naive subjects," Hear Res, vol. 154, pp. 165-

9, Apr 2001. 

[3] T. W. Robbins, M. James, A. M. Owen, B. J. Sahakian, L. McInnes, 

and P. Rabbitt, "Cambridge Neuropsychological Test Automated 

Battery (CANTAB): A Factor Analytic Study of a Large Sample of 

Normal Elderly Volunteers," Dementia and Geriatric Cognitive 

Disorders, vol. 5, pp. 266-281, 1994. 

[4] V. N. Vapnik, Estimation of dependences based on empirical data. 

New York: Springer-Verlag, 1982. 

[5] L. M. Vaina, E. M. Sikoglu, S. Soloviev, M. Lemay, S. Squatrito, G. 

Pandiani, and A. Cowey, "Functional and anatomical profile of visual 

motion impairments in stroke patients correlate with fMRI in normal 

subjects," J Neuropsychol, Oct 8 2009. 

[6] L. M. Vaina, "Selective impairment of visual motion interpretation 

following lesions of the right occipito-parietal area in humans," 

Biological Cybernetics, vol. 61, pp. 347-359, 1989. 

[7] L. M. Vaina, N. M. Grzywacz, and M. LeMay, "Structure from 

motion with impaired local-speed and global motion-field 

computations," Neural Comp., vol. 2, pp. 420-435, 1990. 

[8] L. M. Vaina, M. LeMay, D. C. Bienfang, A. Y. Choi, and K. 

Nakayama, "Intact "biological motion" and "structure from motion" 

perception in a patient with impaired motion mechanisms: a case 

study," Visual Neuroscience, vol. 5, pp. 353-369, Oct 1990. 

[9] L. Vaina, "Functional Segregation of Color and Motion Processing in 

the Human Visual Cortex: Clinical Evidence," Cerebral Cortex, vol. 

5, pp. 555-572, 1994. 

[10] L. M. Vaina, N. M. Grzywacz, and R. Kikinis, "Segregation of 

computation underlying perception of motion discontinuity and 

coherence.," Neuroreport, vol. 5, pp. 2289-2294, Nov 21 1994. 

[11] L. M. Vaina, "Akinetopsia, achromatopsia and blindsight: recent 

studies on perception without awareness.," Synthese, vol. 105, pp. 1-

19, 1996. 

[12] A. Cowey and L. M. Vaina, "Blindness to form from motion despite 

intact static form perception and motion detection," 

Neuropsychologia, vol. 38, pp. 566-578, 2000. 

[13] L. M. Vaina, S. Soloviev, D. C. Bienfang, and A. Cowey, "A lesion of 

cortical area V2 selectively impairs the perception of the direction of 

first-order visual motion," NeuroReport, vol. 11, pp. 1039-1044, Apr 

7 2000. 

[14] L. M. Vaina, A. Cowey, R. T. Eskew, M. LeMay, and T. Kemper, 

"Regional cerebral correlates of global motion perception: Evidence 

from unilateral cerebral brain damage," Brain, vol. 124, pp. 310-321, 

Feb 2001. 

[15] L. M. Vaina, A. Cowey, M. LeMay, D. C. Bienfang, and R. Kikinis, 

"Visual deficits in a patient with 'kaleidoscopic disintegration of the 

visual world'," European Journal of Neurology, vol. 9, pp. 463-477, 

Sep 2002. 

[16] L. M. Vaina, N. M. Gryzwacz, P. Saiviroonporn, M. LeMay, D. C. 

Bienfang, and A. Cowey, "Can spatial and temporal motion 

integration compensate for deficits in local motion mechanisms?," 

Neuropsychologia, vol. 41, pp. 1817-1836, 2003. 

[17] C. S. Royden and L. M. Vaina, "Is precise discrimination of low level 

motion needed for heading discrimination?," Neuroreport, vol. 15, 

pp. 1013-7, Apr 29 2004. 

[18] L. M. Vaina and C. G. Gross, "Perceptual deficits in patients with 

impaired recognition of biological motion after temporal lobe 

lesions," Proceedings of the National Academy of Sciences of the 

United States of America, vol. 101, pp. 16947-16951, Nov 30 2004. 

[19] L. M. Vaina, A. Cowey, M. Jakab, and R. Kikinis, "Deficits of motion 

integration and segregation in patients with unilateral extrastriate 

lesions," Brain, vol. 128, pp. 2134-45, Sep 2005. 

[20] W. T. Newsome and E. B. Paré, "A selective impairment of motion 

perception following lesions of the middle temporal visual area 

(MT)," Journal of Neuroscience, vol. 8, pp. 2201-2211, 1988. 

[21] C. J. Downing and J. A. Movshon, "Spatial and temporal summation 

in the detection of motion in stochastic random dot displays," Invest. 

Ophthal. Visual Sci. (Suppl.), vol. 30, p. 72, 1989. 

[22] W. T. Newsome, K. H. Britten, C. D. Salzman, and J. A. Movshon, 

"Neuronal Mechanisms of Motion Perception," Cold Spring Harb 

Symp Quant Biol, vol. 55, pp. 697-705, 1990. 

 

 

1132


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

