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Abstract—In this paper, as a preliminary study, we show that
accuracy and repeatability in ambulatory measurements of wrist
joint are related to movement conditions which are going to be
used in a calibration procedure. We chose two representative in-
vivo, non-invasive calibration methods of the human upper limb,
from those available in literature, to estimate joint parameters.
Developing an analytical model of wrist joint we used sets of
synthetic data each of which containing different number of
samples, joint covariations and noise to estimate the repeatability
and accuracy of the methods in estimation. Afterwards, we used
our mechanical mock-up to examine single joint motions as
well as the rotation of both joints (i.e. flexion-extension rotation
and radial-ulnar deviation) on accuracy and repeatability by
calculating the mean and standard deviation of the relative
errors. Finally, we show that the accuracy of adapted method
(its relative error was less than 7%) is better than the other
method in estimating the joint parameters.

I. INTRODUCTION

Kinematic analysis of the upper limb is nowadays a fun-
damental tool in various medical fields, in particular clinical
applications. Also thanks to the recent boost of technology
available for motion tracking [1] low-cost, ambulatory, non-
invasive assessment of arm kinematics is now at reach [2].

Many studies have focused on the shoulder-elbow complex
while relatively fewer addressed the wrist joint, despite its
importance on activities of daily living [3], [4], [5], [6], [7],
[8]. Based on both in-vivo and in-vitro studies, it is considered
an acceptable simplification to model the human wrist as
a universal joint with two axes: the flexion-extension axis
(FE), proximal and fixed in the forearm, and the radial-ulnar
deviation (RUD) axis, distal and fixed in the hand. These two
axes are skew-oblique, typically offset by few millimeters and
approximately orthogonal [9].

Ambulatory assessment would in general make use of
wearable sensors to be strapped onto the subject. In the case
of the wrist, sensors shall be placed on the forearm and on
the hand (see Fig. 1.a). To minimize skin motion, bony areas
such as the distal, dorsal part of the forearm are preferred
for strapping. Once the sensors are in place, a calibration
procedure involving voluntary or induced motions of one or
more joints is necessary to determine the relative positions
and orientations between anatomical features (FE and RUD
axes) and the sensors. Only after a calibration procedure one
will be able to infer the anatomical joint angles from sensors
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readings. Calibration is therefore a crucial step as its accuracy
will directly affect the accuracy of the final kinematic analysis.

In the specific case of in-vivo, non-invasive calibration
methods suitable to ambulatory settings, several calibration
methods have been proposed for the joints of the human upper
limb1[10], [11], [12], [2], [13]. Many similarities exist among
these approaches in the sense a serial kinematic chain with
unknown parameters is assumed to model the human upper
limb (or a subset of its joints) and optimal estimates for the
unknown parameters are derived from measurements in a least-
squares framework.

In this work, we are primarily interested in how joint
covariation as well as noise in measurements may influence
the outcome of calibration methods. Unlike the elbow, the two
joints of the wrist are actuated by the same set of muscles
and voluntary movements can hardly produce pure single-joint
motions [14]. Some calibration methods rely on single-joint
movements and therefore might provide erroneous estimates
due to such a covariation. Conversely, other methods devised
to assess multiple joints at a time, might provide erroneous
results when one of the joints is not sufficiently involved.

To this end, we selected two representative methods from
those available in literature focusing on the two skew-oblique
axes of the wrist: the first method (M1) was proposed by
Biryukova et al. [10] and was devised to estimate parameters
for one joint at a time; the second method (M2) is adapted
from Prokopenko et al. [12] is used to estimate all parameters
at once. The reason for readapting the second method is that
in the original work [12], the authors minimize the so called
‘Direct Kinematic Error’, which is a weighted sum of position
errors and orientation errors (between estimated and measured
data). This step necessarily involves a somewhat arbitrary
choice of weights, Prokopenko et al. [12] justify this choice
based on a specific set of data but it is clearly movement
dependent. In this paper we shall use for both methods M1 and
M2 the same least-square approach used in [10]. Therefore,
the method M1 is implemented ‘as is’, see [10] for details,
while for method M2 we provide a detailed description of
our implementation, to enable the reader to reproduce the
algorithm.

Non-invasive calibration methods proposed in literature, are
typically tested on several subjects over multiple trials. Due
to various sources of errors (e.g noisy measurements and skin

1The shoulder is regarded as ball-in-socket joint, while the remaining joints
at elbow and wrist are regarded as rotational hinges.
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Fig. 1. Axes of rotation in the wrist joint in human wrist (a) and mechanical
mock-up counterparts (b). P 1 and P 2 are the position vectors of the sensor
S1 on the forearm and S2 on the 3rd metacarpal in the stationary frame,
Base; A1 and ωFE are the position vector and orientation of the FE axis
relative to the S1; A2 and ωRUD are the position vector and orientation of
the RUD axis relative to the S2 pointing to the minimal distance Δ between
the two axes.

motion) different estimates are obtained from different trials.
The standard deviation of the parameters across trials or the
small residuals in the fitting process [12] are often taken as an
index of accuracy. In fact, standard deviation or goodness of fit
are index of repeatability but not accuracy, as the ground-truth
is not known (only invasive methods can be used to measure
the real anatomical features). In this work, we shall test the
two representative methods M1 and M2 on a set of synthetic
data as well as on real data acquired via a mechanical mock-
up (shown in Fig. 1.b). In both cases the ground-truth, i.e.
the actual geometry of the problem, is known and therefore
accuracy can be determined. The synthetic approach allows
to generate ideal as well as noisy data, the mechanical mock-
up involves the real sensors with their specific noise levels
and allows to test the calibration methods without incurring in
other nonidealities such as skin motion.

The paper is organized as follows. In section II, the kine-
matic model for wrist joint is described. Section III presents
the adapted method for M2 as well as approaches which we
considered for synthetic and experimental data to evaluate
the proposed methods. Finally, the effects of different motion
conditions are presented and discussed.

II. WRIST KINEMATIC MODEL

The wrist model considered here is as in [10], [12]: a
universal joint with two skew-oblique axes, as in Fig. 1.a.
The unit vector ωFE represents the FE axis and is fixed on
the forearm, i.e. proximally. The unit vector ωRUD represents
the RUD axis and is fixed on the hand, i.e. distally. The two
axes are non intersecting, with a few millimeters distance Δ
between them [3], and approximally perpendicular, although
variations exist from subject to subject. The Range of Motion
(RoM) of the joint angles θFE and θRUD also may vary from
subject to subject but, on average, can be considered as [-50
35] degrees for θRUD and [-65 70] degrees for θFE .

Fig. 1.a, also shows the main frames of interest in this
problem. Two sensors, attached to the forearm and to the hand,
define two frames of reference S1 and S2, respectively, as in
Fig. 1.a. We used the Liberty System (Polhemus Technologies
Inc), for which each electromagnetic sensor provides readings

of its orientation and position (6 degrees of freedom) with
respect to a base frame of reference B (corresponding to the
electromagnetic source) and a rate of 240 samples per second.
Both sensors and source are visible in Fig. 1.b where the
source is the large cube and the sensors are fixed onto the
mock-up.

It should be noticed that ωFE is fixed with respect to S1,
while ωRUD is fixed with respect to S2. According to the
anatomical structure of the wrist, we defined an additional
frame (fFE). Its x-axis is aligned with ωFE , its z-axis is
aligned with ωFE × ωRUD , i.e. perpendicular with both FE
and RUD axes, and its y-axis is defined via the right-hand
rule.

Following standard robotics approaches [15], we can now
define the transformations between the above defined reference
frames, with the convention that a symbol ATB indicates a
4 × 4 homogeneous transformation matrix from a frame B
into a frame A, a bold symbol X indicates a space vector and
X(F ) indicates its coordinates with respect to a frame F .

In ambulatory conditions, sensors S1 and S2 will provide
time-varying readings BTS1 and BTS2, respectively:

BTSi =

[
Ri P

(B)
i

0 0 0 1

]
(1)

Where i = 1, 2, Ri is the rotation matrix and P
(B)
i the position

of sensor Si with respect to the base (B).
Nevertheless, such readings will not be independent because

of the kinematic relationship between the two sensors:

BTS2 = BTS1
S1TfFE

fFETS2 (2)

Following [15] S1TfFE , fFETS2 in (2) are defined as :

fFETS2(θRUD) = exp (ξ̂RUDθRUD) fFETS2(0) (3)
S1TfFE (θFE) = exp (ξ̂FEθFE)

S1TfFE (0) (4)

Where the exponential exp ξ̂θ in (3)-(4) defines a screw
motion generated by a twist ξ̂, operatively defined as

ξ̂ =

[
ω̂ v
0 0

]
=

[
ω̂ −ω × q + hω
0 0

]
(5)

Where ω is the unit vector of a rotation axis; q is any point
on the axis; h is the pitch2; and v = −ω × q + hω.

For rotational axes (ω �= 0) the exponential is computed as

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω × v) + ωωTvθ
0 1

]
(6)

Table I provides the parameters used for the numerical
calculations considering the position vectors A1 in (S1) and
A2 in (S2) defined as

A
(S1)
1 := [A1x A1y A1z ]

T ; A
(S2)
2 := [A2x A2y A2z ]

T (7)

2For purely rotational joints h = 0. In our current mechanical mock-up, the
rotational joints are implemented with low-pitch screws and we neglected any
pitch effect.
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and the distance between the FE and RUD axes geometri-
cally defined as

Δ = Δ
ωFE × ωRUD

|ωFE × ωRUD| (8)

with Δ(fFE) = [Δx Δy Δz]
T .

TABLE I
PARAMETERS FOR THE SCREW MOTION CALCULATION

ω q ATB(0)

S1TfFE

⎡
⎣

0
−1
0

⎤
⎦

⎡
⎣

A1x

A1y

A1z

⎤
⎦

⎡
⎢⎣

0 0 1 A1x

−1 0 0 A1y

0 −1 0 A1z

0 1

⎤
⎥⎦

fFETS2

⎡
⎣

0
1
0

⎤
⎦

⎡
⎣

Δx +A2y

Δy + A2z

Δz −A2x

⎤
⎦

⎡
⎢⎣

0 −1 0 Δx

0 0 −1 Δy

1 0 0 Δz

0 1

⎤
⎥⎦

III. METHODS

A. Parameter Estimation

Referring to Fig. 1.a, the following invariant i.e. frame
independent) geometric relation holds:

P 2 − P 1 = A1 +Δ−A2 (9)

Vectors P 1 and P 2 are conveniently expressed in base
frame (B) coordinates, as the sensors directly measure P

(B)
1

and P
(B)
2 . Vector A1 and ωFE are unknown but, being fixed

onto the forearm, their coordinates A
(S1)
1 and ω

(S1)
FE with

respect to the frame S1 (sensor 1 is also fixed on the forearm)
are constant. Similarly, also A

(S2)
2 and ω

(S2)
RUD are unknown

but constant vectors.
For numerical calculations, we shall like to express (9) with

respect to the base frame (B). Orientation matrices R1 and R2

from, respectively, sensors S1 and S2 can be used to transform
coordinates from (S1) or (S2) to (B), e.g. for a general vector:

X(B) = R1X
(S1) = R2X

(S2) (10)

Furthermore, due to inherent measurement noise, equation (9)
will not hold exactly but in general we can write

ε =
∣∣∣P (B)

2 − P
(B)
1 −A

(B)
1 −Δ(B) +A

(B)
2

∣∣∣
and after a change of coordinates as in (10):

ε =
∣∣∣P (B)

2 − P
(B)
1 −R1A

(S1)
1 . . .

· · · −Δ
R1ω

(S1)
FE ×R2ω

(S2)
RUD∣∣∣R1ω

(S1)
FE ×R2ω

(S2)
RUD

∣∣∣
+R2A

(S2)
2

∣∣∣∣ (11)

where ε is a positive scalar (ideally ε → 0).
It should be noticed that all terms in equation (11) are either

directly measured from sensors (P (B)
1 , P

(B)
2 , R1, and R2)

or as unknown constants: one scalar Δ, two position vectors
A

(S1)
1 , A(S2)

2 , and two axes ω
(S1)
FE , ω(S2)

RUD ). Each position
vector amounts to 3 unknown scalar parameters, defined as
(7).
Each axis vector is by definition of unit length and amounts

to only two unknown parameters. Guided by the clinical
application, we decided to consider the sensors S1 and S2
as mounted on the dorsal part of the forearm and hand,
respectively, with the wires directed proximally (see Fig. 1).
For the specific case of Polhemus sensors, the sensor x-axis
(aligned with the wire) will be roughly aligned with the main
axes of the forearm (for S1) and hand (for S2). The z-axis of
each sensor will point volarly (Fig. 1.a) . With this convention,
we can define vectors of unit length identify with only two
parameters3, as follows:

ω
(S1)
FE :=

1√
1 + α2

1 + β2
1

[α1 1 β1]
T (12)

ω
(S2)
RUD :=

1√
1 + α2

2 + β2
2

[α2 β2 1]T (13)

Similarly to [10], for a given set of measurements acquired
during a time t ∈ [0 T ], we can determine the 11 parameters
by solving a least-squares problem4

p∗ := argmin
p∈R11

1

T

∫ T

0

ε2 dt

where p := [A1x A1y A1z A2x A2y A2z α1 β1 α2 β2 Δ]T

and ε is from (11).

B. Synthetic Data

Given a sequence of joint angles θ
(n)
FE and θ

(n)
RUD , where n

is the (discrete) time index, we can generate the corresponding
sequence of wrist motions via the forward kinematic model.
In particular, from eq. (2–4), we can generate the sequence of
matrices BT

(n)
S2 representing the sensor readings from S2. For

the sensor S1, we assume that the forearm is at rest, therefore
the sensor readings from S1 would be constant.

A pure FE movement is generated by keeping θ
(n)
RUD = 0

while varying the FE joint angle θ
(n)
FE . In particular, for a given

number of samples Ns, θ(n)FE assumes Ns equally spaced values
within its range of motion and n = 1, . . . , Ns. Similarly, for
pure RUD movements, the FE joint angle is kept fixed while
the RUD joint angle is varied between Ns equally spaced
values within the RUD range of motion.

We simulated the effect of joint covariations by admitting
motion for the joint supposedly held fixed. For example, for
pure FE movements, we allowed θ

(n)
RUD = c μ(n) θ

(n)
FE , where

c is a coefficient of covariation (c = 0 denotes a pure FE
movement) and μ(n) is a sequence of random numbers equally
distributed between zero and one. A similar procedure was
adopted for the RUD movements.

We then used both methods M1 and M2 to estimate the
model parameters (A1, A2 and Δ) from sequences of FE

3The problem is similar to the parameterization of a 2-sphere which,
although bidimensional, cannot be described (globally) with only two pa-
rameters. Equations (12) or (13) can only describe (almost) an hemisphere
which becomes sufficient when the axis of a sensor is ‘roughly’ aligned with
the expected direction of the anatomical axis.

4Numerically solved via the function lsqnonlin in MATLAB.
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and RUD movements affected by different levels of joint
covariations as well as by different number of samples Ns.

Finally, to simulate the effect of noisy measurements, we
added noise (δR(n)) to the orientation readings from the
sensors, R(n), by R

(n)
noise := δR(n)R(n). We considered three

levels of angular RMS noise: 0.15◦, 0.30◦ and 0.45◦. The
0.15◦ level corresponds to the static accuracy orientation for
the Polhemus Liberty System.

To assess accuracy and repeatability for each method in
estimating a generic parameter A, we computed the relative
error eA, defined as

eA =
||Aest −Areal||

||Areal|| (14)

where Aest and Areal are, respectively, the estimated and
exact value of the parameter A.

C. Experimental data

We used the mock-up shown in Fig. 1.b, to conduct two
batches of experiments. For each experiment, one subject was
asked to manually move the mock-up (as if it were a patient’s
wrist, according to specific instructions described next) while
the corresponding sequences of sensor readings BTS1, BTS2

were sampled at 240 Hz. Assuming the configuration of mock-
up shown in Fig. 1.b as natural position, the movements started
from this position.

1) Experiment 1 (Strapped forearm condition): The mock-
up was mounted on a table, simulating a strapped forearm
(in this case sensor S1 is not moving, providing constant
readings). Three types of movements were performed:

Exp1a: one joint at a time was mechanically locked (with
ad-hoc screws) while the subject was asked to perform 10
rotations with the other joint, throughout the range of motion.

Exp1b: subject was asked to perform a similar set of
movements as in Exp1a on one joint at a time while the
other joint was mechanically unlocked. Despite the specific in-
struction of performing single-joint movements, subject would
unavoidably elicit movements in both joints at the same time.

Exp1c: the subject was asked to induce circumduction
movements of the wrist (clearly, the mock-up joints were both
unlocked).

2) Experiment 2 (ambulatory condition): The subject was
instructed to perform movements as in Exp1b and Exp1c while
holding the whole (lightweight) mock-up in his own hands. In
particular, the mock-up forearm was no longer strapped onto
the table, corresponding to an ambulatory condition (readings
from sensor S1 were no longer constant).

For each motion, we recorded the sequence of sensor
readings and used methods M1 and M2 to estimate the desired
parameters of mock-up (i.e. A1, A2 and Δ). We computed the
relative error for estimated values in a samilar procedure as
described in eq. 14.

IV. RESULTS

A. Synthetic Data

Using the described synthetic data we could evaluate the
effect of joint covariation, noise and number of samples on

the accuracy of parameter estimation by methods M1 and M2.
Fig. 2.a shows the effect of joint covariation on parameter
estimation on both methods, for different levels of noise when
a large number of samples was acquired (Ns=2500). Because
of the large number of samples, both methods are rather
insensitive to noise levels but method M1 is highly sensitive
to the covariation index. In particular, method M1 displays
a parabolic increase of accuracy error for small covariations
(0-20%) and linear afterwards, while method M2 is accurate
(almost zero accuracy error) throughout the whole range of
covariations (0-40%).
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Fig. 2. The effect of joint covariation(a) and the number of samples(b) on
relative error in estimations of methods M1 (squares) and M2 (circles). The
solid line, dashes and dots present 0.15◦, 0.30◦ & 0.45◦ angular RMS noise.

On the other hand, as shown in Fig. 2.b, both methods M1
and M2 are sensitive to noise for smaller numbers of samples
(Ns ≤ 2000), only for larger samples (Ns ≥ 2500) the effect
of noise on measurements is averaged out.

B. Experimental data

Experimental data with a mock-up were meant to highlight
the joint covariation necessarily induced by manual move-
ments on joints kinematically similar to the human wrist.
Fig. 3 shows the joint-space representation of induced wrist
movements. It is clear that in absence of locking mechanisms
(screws for our mock-up, or possibly ad-hoc splinting for
the human wrist) a joint covariation as large as 10% can be
induced by manual motion of the wrist. Fig. 3 shows the su-
perposition of 3 movements out of the 10 (for sake of clarity in
the graph) in three different conditions. In the locked condition
(solid line) the movements are perfectly superimposed, for the
single-joint but unlocked condition (dotted lines) a 10% joint
covariation is observed, a similar variability is present in the
circumduction movements (dashed lines).

Another feature is that the centres of the ‘crosses’ rela-
tive the unlocked movements also display a 10% variability,
indicating that with manual movements we should expect a
repeatability error also for returning to a ‘zero-position’.

The mean and standard deviation of the relative error for
each trial is calculated to evaluate the accuracy (mean) and
repeatability (standard deviation) of the methods M1 and
M2 in parameter estimation. For method M2, the relative
error on estimation is less than 7% for the parameters in all
movements, showing a better accuracy than method M1, see
Fig. 4). The accuracy in estimating Δ by method M2 seems
insensitive to type of movement for both strapped forearm and
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Fig. 3. Considering different joint rotations for ‘Locked’, ‘Unlocked’ and
‘Circumduction’ movements.

ambulatory conditions while, method M1 is highly related to
the type of movement (Fig. 4). As it is expected, accuracy
and repeatability in parameter estimation by method M1 in
the locked conditions (i.e. mechanically induced pure single-
joint movements) are better than or comparable with method
M2.

Locked Unlocked Circum Unlocked Circum
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]

 

 

<−−− Strapped forearm −−−> <−− Ambulatory −−>

M1 M2

Fig. 4. Mean and standard deviation of relative error for estimating Δ, as a
representative parameter of the physical mock-up, by methods M1 (dots) and
M2 (crosses).

V. CONCLUSION

In this paper we first evaluated the effect of joint covariation,
number of samples as well as noise in measurements on
the outcome of two types of parameter estimation methods:
method M1 proposed by Biryukova et al. [10] and method
M2 adapted from Prokopenko et al. [12]. To this end, we
used synthetic data to artificially change the amount of joint
covariation and level of noise, in relation of number of
samples. For method M1, which assumes pure single-joint
motions, the accuracy error increases with joint covariation
while method M2 is insensitive to joint covariation, see
Fig. 2.a. However, both methods are sensitive to noise in
measurements, especially for lower number of samples (less
than 2500 per movement), as shown in Fig. 2.b.

To assess the accuracy and repeatability of methods M1 and
M2, we developed a physical mock-up with known dimensions
to be able to compare the estimated values with the actual
ones (i.e. estimating accuracy). We computed the mean (accu-
racy) and standard deviation (repeatability) of relative errors
for the parameter estimation for both strapped forearm and
ambulatory conditions. As expected, in general, method M2
outperforms method M1 in terms of repeatability and accuracy
except for the locked condition, in which joint covariation is
inhibited, see Fig. 4.

This preliminary study shows that method M2 is especially
suitable for ambulatory conditions where higher variability
in the joint space (e.g. joint covariation or circumduction
movements) induces better accuracy in parameter estimation.
As for future work, we aim at deriving guidelines for a clinical
protocol, to guarantee a given level of accuracy in estimating
the parameters of human wrist joints.
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