
  
Abstract – Noninvasive methods for deep body temperature 

measurement are based on the principle of heat equilibrium 

between the thermal sensor and the target location theoretically. 

However, the measurement position is not able to be definitely 

determined. In this study, a 2-dimensional mathematical model 

was built based upon some assumptions for the physiological 

condition of the human abdomen phantom. We evaluated the 

feasibility in estimating the internal organs temperature 

distribution from the readings of the temperature sensors 

arranged on the skin surface. It is a typical inverse heat 

conduction problem (IHCP), and is usually mathematically 

ill-posed. In this study, by integrating some physical and 

physiological a-priori information, we invoked the quasi-linear 

(QL) method to reconstruct the internal temperature 

distribution. The solutions of this method were improved by 

increasing the accuracy of the sensors and adjusting their 

arrangement on the outer surface, and eventually reached the 

state of converging at the best state accurately. This study 

suggests that QL method is able to reconstruct the internal 

temperature distribution in this phantom and might be worthy 

of a further study in an anatomical based model. 

I. INTRODUCTION 

ODY temperature is one of the most vital indices for 

human physiological condition. Deep body temperature 

is a reliable indicator of body functions, and its circadian 

rhythm contains abundant information, which reveals 

individual physiological states, and is important in patient 

monitoring and chronobiological studies [1]. 

Many different methods have been developed for 

measuring temperatures deep inside the body. Since the 

1970s, methods that sought to measure the deep body 

temperature noninvasively have been proposed, such as 

zero-heat-flow method introduced by Fox et al. in 1971[2], 

[3], and dual-heat-flux method introduced by Kitamura et al. 

in 2009 [4]. The main problem of these existing methods is 

that, the deep body temperature is estimated without specific 

information of measurement location inside human body. 

Namely, the point where the temperature is measured remains 

unknown. We want to find out a new method, which can 

provide us more information about the temperature 

distribution inside human body. 
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There are two main characteristics in this kind of heat 

transfer: metabolic heat generation and thermal energy 

exchange between flowing blood and the surrounding tissues. 

This kind of heat transfer can be described by the bioheat 

equation with some anatomical and physiological restrictions 

[5]. Firstly, the geometric structure of the organs’ spatial 

distributions is easily to be acquired by the means of such as 

magnetic resonance imaging (MRI) or X-ray computed 

tomography (CT). Secondly, the number of the organs inside 

human’s abdomen is limited. Thirdly, according to 

physiology, the fluctuations of temperature values of the 

organs are torpid and are kept in a low level. The temperature 

level is maintained within a narrow range around 37�C [6]. 

These intrinsic properties provide us with some valuable 

information to simplify the inverse modeling. 

This study concerned with both aspects of modeling, where 

the forward modeling refers to determining the heat state of a 

body or system given the geometry, boundaries conditions, 

and thermal properties. In terms of the inverse problem, the 

aim is to reconstruct the internal sources of heat from a set of 

measured data. This kind of problem is typically ill-posed [7]. 

In this paper, we want to incorporate the covariance of the 

solution, assumed to be known a-priori information, as long 

as the noise characteristics information of the temperature 

sensors  and then utilize the quasi-linear (QL) method to 

assess the validity in estimating the temperature distribution 

in the internal boundaries from outer boundary temperature 

measurements. 

 

 

II. METHOD 

A. Forward Problem 

The behavior of bioheat can be described by the bioheat 

equations below [8]: 
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where �, cp, and k are the density of the local tissues (kg/m
3
), 

the specific heat of local tissues (J/kg·°C), and the thermal 

conductivity (W/m·°C), respectively. The terms qp and qm are 

the heat transfer rates due to the blood perfusion and 

metabolic procedure, respectively. T, t, Tamb and Ts are the 

temperature (°C) in torso domain, the internal boundaries 

temperature, the ambient temperature and the temperature on 

the outer boundary, respectively. � denotes torso domain, and 

�D, �N represent organs’ surfaces (Dirichlet boundary) and 

Ming Huang, Student Member, IEEE and Wenxi Chen, Member, IEEE 

Inverse Modeling for Heat Conduction Problem in Human 

Abdominal Phantom 

B

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 1367

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 
 

Fig. 1. Geometry of the two dimensional mathematical model of the 

abdominal phantom. The peripheral tissue layer and skin layer are considered 

to be homogeneous respectively. An internal boundary from t1 to t6 

corresponds to stomach, left kidney, liver, right kidney, spleen and spine 

respectively.  

body surface (Neumann boundary) respectively, h is the heat 

transfer coefficient with the ambient environment and n
�

denotes the normal to the boundary. 

To solve the inverse problem, we made the following 

assumptions: the heat flux flows out of the inner organs onto 

the skin. The heat effects due to blood perfusion and 

metabolism in the peripheral tissues and skin layer are 

neglected. The model stays steady under the state of thermal 

equilibrium. Every organ inside the abdomen is isothermal, 

so we could focus on the boundary temperature of each organ 

only. The bioheat equations are simplified as follow: 
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The 2-dimensional mathematical model we built is shown 

in fig. 1. The small ellipses were employed to simulate the 

main organs such as liver, stomach and so on. t1-t6 represent 

the thermal independent internal boundaries, while the points 

P1-P12 denote the temperature sensors on the outer boundary. 

In forward problem, we could determine the heat state of 

the model uniquely with the corresponding boundaries 

condition and thermal properties of the model. We utilized 

the finite element method (FEM) for the discretization and 

forward model computation.  

 

B. Inverse Problem 

In this study, we assumed that the temperature 

measurements were carried out on the outer boundary with 

temperature sensors, the unknown parameters were the 

temperature values of the internal organ boundaries. The 

inverse problem was described as follow: from the 

temperature readings acquired by the sensors arranged on the 

outer boundary, we tried to estimate the temperature value of 

each internal boundary.  

For an ill-posed problem, a subtle variation of the 

measurement could be magnified on the solution [9]. It is the 

reason why we need the regularization for the inverse 

problem. The “regularization” is a class of techniques, in 

which by integrating some a-priori information of the model 

to constrain the original ill-posed problem to yield somewhat 

better posed problems.  

By discretizing the model with FEM, we can describe the 

forward modeling with the transfer function below: 
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f(t) represents the process of forward model computation and 

outer boundary temperature values’ extraction. After the 

model’s discretization, Ts turns out to be an m-dimensional 

(m is the number of the sensors) vector consisted of 

temperature readings from sensors, while t is an 

n-dimensional vector consisted of internal boundaries 

temperature values. 

The QL method is a method of inverse modeling to identify 

an unknown parameter set [10]. By combining a-priori 

information of the model, QL method treats the inverse 

problem from a statistical point of view, where the transfer 

function is successively linearized as below: 
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vector of internal boundaries temperature values, while the 
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Weight matrices R and Q are the a-priori information about 

the model. R is the m-by-m covariance matrix of 

measurement errors. Q is the n-by-n covariance matrix of the 

solution. X is an n-by-1 vector of one; � is a known mean of 

the unknown parameter set. By invoking a local linearity to 

approximate the transfer function, QL method finds the next 

estimation iteratively: 
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Fig. 2 shows the flowchart of the QL method. In the 

forward modeling, what we need is the real temperature 

values on internal boundaries, the weighted matrices R and Q. 

Inside the QL method, the initial guess of WWWW
~

 is necessary. 

Note that, in the initial process (i=0), only the first term of (10) 

is calculated because that in the initial process � is not 

available. Subsequently, program runs into the iterative 

procedure to search for the solution. The value of Èwwww in the 

criteria is 0.001 here. 

C. Implementation of Model Simulation: 

The sensitivity matrix H was employed to quantify the 

effects of the unknown (boundary temperature values) 

variations on the results (the temperature values of the 

Peripheral tissue layer 

Skin layer 
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Fig. 3. A summary of the simulation results. The six bars from left to right in 

each cluster are the average values of absolute error from t1 and t6 over thirty 

times of simulations. Small bars on top presents the SD of the absolute error 

of the corresponding internal boundary. 

 
Fig. 2. The flowchart of the QL method. This algorithm is implemented with 

COMSOL-MATLAB linkage.  
 

measuring sites) [11]. This matrix was computed with the 

adjoint sensitivity analysis procedure (ASAP), which, in this 

study, could be derived by the embedded adjoint method 

algorithm in COMSOL [12]. The simulation was 

programmed and performed with COMSOL-MATLAB 

linkage.  

This simulation focused on the effects of the noise 

characteristics and arrangement (quantity and location) of the 

temperature sensors on the inverse solution. The noise 

characteristics could be introduced by diagonal matrix R, 

where the diagonal elements are identical and considered as 

square of systematic error of the sensors, three different 

values 1, 0.25, and 0.01 ((�C) 
2
) were used. Meanwhile, three 

types of sensors arrangement were employed. The first type 

used four sensors (P3, P6, P9 and P12). The second type used 

eight sensors (excluding P1, P4, P7, P10) and the third used 

all 12 sensors. Q is generated basing on the physiological 

assumption that each organ that we are concerning is thermal 

independent and their temperature fluctuation is normally 

distributed with 1.0�C standard deviation (SD) and 37.0�C 

mean value. 

The simulations were organized as follow: given R and the 

sensors’ arrangement (termed as experiment condition), for 

each simulation, we preset the vector t. As for the generation 

of t, the temperature value of each internal boundary was 

changed respectively with an interval of 0.5�C from 36.0�C to 

38.0�C while the temperature values of others were kept at 

37.0�C. As a result, for each given experiment condition, 

thirty times of simulation were carried out. 

III. RESULTS OF NUMERICAL SIMULATIONS 

Fig. 3 shows the results of the simulations, which is the 

summary of results from 270 times of simulation. We marked 

a specific experiment situation with the notation: (noise 

characteristics, sensors arrangement) in fig. 3. The six bars of 

each cluster denote the average of the absolute errors between 

the inverse solutions and the real values of the corresponding 

internal boundary over thirty times with specific experiment 

condition. The corresponding standard deviations of the 

errors are presents with small bars on top.  

The results were divided into 3 groups and data of the same 

subfigure were acquired under the situation that sensors’ 

noise characteristics are identical. For each internal boundary, 

generally speaking, the solutions were improved with the 

increasing of the sensor’s accuracy. On the other hand, with 

identical sensor specification, deploying more sensors on the 

outer boundary will help to get a better solution. These 

improvements are especially obvious in the results of 

boundaries t1 and t3. 

For boundaries t4 and t6, it is not so helpful by merely 

increasing the sensor accuracy with four-sensor arrangement. 

We got an acceptable result when we increased the sensor 

quantity from four to eight and improve the sensor accuracy 

at the same time. Extreme situations were found in t2, we 
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could solely get a fine solution with twelve sensors and the 

best sensor accuracy. 

IV. DISCUSSION 

The aforementioned contrast of fitting results may stem 

from the geometric construction of the model in which the 

parts with boundaries t1 and t3 occupy the largest areas and 

are close to the outer boundary. Hence, their temperature 

variations can be reflected on temperature measurements 

remarkably. However, as for the parts with boundaries t4 and 

t6, they are not so large as the previous two parts and, on the 

other hand, t4 locates deep inside the phantom and is 

sandwiched by t3 and t6. For these reasons, we cannot trace 

their variations only with four sensors. It is even harder to get 

a fine solution for t2, for the reason that t2 is blocked by t5 

from the outer sensors, so that its variation has little effect 

even on the nearest sensor P8. Boundaries t2, t4 are employed 

to simulate the small organs locating in the central area of 

human abdomen, such as the kidneys. The results show that, it 

is possible to trace their temperature variation closely. 

Nevertheless, sensors with high precision and a reasonable 

arrangement are necessary. Among the results of the 

simulations, the maximum error of t2 can be reduced to about 

0.15 ���when twelve sensors with 0.1 �� systematic error 

were used. In terms of a noninvasive method, it is a 

satisfactory error level for the common resolution for 

temperature sensor is 0.1 ���� To improve the� solutions, 

especially in an anatomy-based model where the organs 

possess anisotropic physical properties and irregular 

boundaries, it is better to place the sensors according to the 

actual heterogeneous characteristic of the organs rather than 

to place them evenly. 

The current QL method can solve for the temperature 

values of internal boundaries with specific locations inside 

the model. However, in reality the actual cross-sectional 

geometry for individual is unique so that we can only give an 

approximate description of the temperature distribution. 

However, for parts such as t1 and t3 the deviation with the 

actual value is not as visible as parts such as t2 and t4.  

The major computational burden for QL method is the 

generation of H. Theoretically speaking, to generate H, n+1 

times of forward model runs is necessary. Compared with 

Monte-Carlo-based algorithms, which needs a large number 

of samples to find out the solutions, QL method seems more 

suitable for this specific task. In the process of simulations, 

we have tried to increase the upper limit of temperature 

variation to 45 �C, QL method was able to search for the 

solutions effectively and the initial guesses have little effect 

on the solutions. 

Human vascular system plays an important role in 

systematic thermoregulation. It helps the vital organs to keep 

their temperature steady. In our model, by generally 

considering each organ as a heat source combining the effect 

of blood perfusion and metabolism, each internal boundary is 

considered isothermal. Meanwhile, the perfusion of the blood 

on the skin layer is neglected. This disposal gives an overall 

description of the organ’s temperature and is coincide with 

the purpose of this study, which is to validate the feasibility of 

using the QL method in deep body temperature estimation 

theoretically. 

For real human abdomen, the organs are not always 

isothermal and have irregular boundaries. To get a more 

precise model, we need to redivide the geometry into a series 

of finer subareas. For example, we can redivide the part t1 into 

four or eight subareas. Whereas physiology based a priori 

information is still unavailable and a further partition of the 

model will naturally increase the computational costs in the 

computation of sensitivity matrix. In the further study, we 

would like to test the computation capability of QL method in 

an anatomy-based model with finer spatial partition. 

V. CONCLUSIONS 

In this study, the QL method is proposed to study inverse 

problem in bioheat heat conduction. Attributing the sensor’s 

noise level and their arrangement as the major factors 

affecting the inverse solution, we carried out numerical 

simulations in a mathematical model. Basing on the statistical 

meaning of the a-priori information reflected by weighted 

matrices Q and R, we got a series of results that demonstrate 

the dependent relationships among estimation performance, 

measurement accuracy and arrangement scheme of thermal 

sensors, QL method could be used to search for the accurate 

solution in the inverse problem. 

ACKNOWLEDGMENT 

The authors wish to thank Professors Nemoto and 

Kitamura for their generous advice and discussions during 

this study. 

REFERENCES 

[1]  T. Tsujimoto, N. Yamada, K. Shimoda, K Hanada, S. Takahashi, 

“Circadian rhythms in depression : Part I: Monitoring of the circadian 

body temperature rhythm�” J Affect Disorders, vol. 18, pp. 193-97, 

1990 

[2] R. H. Fox, A. J. Solman, “A new technique for monitoring the deep 

body temperature in man from the intact skin surface�”�J Physiol, vol. 

212, pp. 8–10, 1971. 

[3] R. H. Fox, A. J. Solman, R. Isaacs, A. J. Fry, I. C. MacDonald, “A new 

method for monitoring deep body temperature from the skin surface,” 

Clin Sci, vol. 44, pp. 81–6, 1973. 

[4] K. I. Kitamura, X. Zhu, W. Chen, T. Nemoto, “Development of a new 

method for the noninvasive measurement,” Med Eng Phys, vol. 32, pp. 

1–6, Jan. 2010. 

[5] W. J. Minkowycz, E. M. Sparrow, J. P. Abraham, Numerical Heat 

Transfer, Boca Raton, FL: CRC Press, 2009, pp. 6-7. 

[6] Thomas. Reilly, Jim. Waterhouse, “Circadian aspects of body 

temperature regulation in exercise,” J. Therm. Bio, vol. 34, pp. 161-170, 

2009 

[7] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. 

Washington, DC: V. H. Winston & Sons, 1977 

[8] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, 

Fundamentals of Heat and Mass Transfer. Hoboken, NJ: JohnWwiley 

& Sons, 2007, pp. 162-166. 

[9] A. Tarantola, Inverse Problem Theory and Methods for Model 

Parameter Estimation, Paris France: SIAM, 2005 

[10] Peter.Kitanidis, “Quasi-linear geostatistical theory of inversing,” Water. 

Resour. Res., vol. 31, pp. 2411-19, 1995 

[11] D. G. Cacuci, M. I. Bujor, I. M. Navon, Sensitivity and Uncertainty 

Analysis, vol. 2 , Boca Raton, FL: CRC Press, 2005 

[12] http://www.comsol.com/ 

1370


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

