
 
 

 

  

Abstract: Many methods for inferring genetic regulatory 
networks have been proposed. However inferred networks can 
hardly be used to analyze the dynamics of genetic regulatory 
networks. Recently nonlinear differential equations are 
proposed to model genetic regulatory networks. Based on this 
kind of model, the stability of genetic regulatory networks has 
been intensively investigated. Because of difficulty in estimating 
parameters in nonlinear model, inference of genetic regulatory 
networks with nonlinear model has been paid little attention. In 
this paper, we present a method for estimating parameters in 
genetic regulatory networks with SUM regulatory logic. In this 
kind of genetic regulatory networks, a regulatory function for 
each gene is a linear combination of Hill form functions, which 
are nonlinear in parameters and in system states.  To 
investigate the proposed method, the gene toggle switch 
network is used as an illustrative example. The simulation 
results show that the proposed method can accurately estimates 
parameters in genetic regulatory networks with SUM logic. 
 
Keywords: genetic regulatory networks, parameter estimation, 
toggle genetic regulatory network, SUM logic 

I. INTRODUCTION 
genetic regulatory network is a complex dynamic 
system which describes interactions among genes 

(mRNA) and its products (proteins). Inferring genetic 
regulatory networks from time series data is a very important 
step towards understanding and further designing them. 
Many methods have been proposed to infer genetic 
regulatory networks, such as Bayesian Networks [1-4], 
probabilistic graphic model [5, 6], Boolean Networks [7-9]; 
and differential equations [10-12], and state space models 
[13]. The inferred networks with these methods can fit time 
series observation data very well. However, they can hardly 
be used to analyze the dynamics of genetic regulatory 
networks.  
     On the other hand, based on the statistic thermodynamics 
and biochemical reaction principle [14, 15], a genetic 
regulatory network can be described by a group of nonlinear 
differential equations [16-18]. Based on this kind of models, 
the stability of genetic regulatory networks has been 
intensively studied [18-23]. Because of their complexity, this 
kind of model has not been used to infer genetic regulatory 
networks from time series data. 
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     In this paper, we will present a method to estimate 
parameters in genetic regulatory networks with SUM logic 
which are described by nonlinear differential equations. 
Section II introduces genetic regulatory networks with SUM 
regulatory logic [24] and discusses the properties of this 
model for the purpose of parameter estimation. In Section 
III, we will present a method for estimating the parameters 
in this kind of model. To investigate the proposed method, 
the simulation study is conducted on a toggle genetic 
regulatory network in Section IV. Section V gives our 
conclusion of this study. 

II. GENETIC REGULATORY NETWORKS WITH SUM LOGIC 
From [18], genetic regulatory networks with n  mRNAs and 
n  proteins can be described by the following equations: 
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            for i=1,2,…,n. 
where )(tmi , )(tpi

nR+∈  represent the concentrations of 
mRNA i and protein i, respectively. mik  and pik are positive 
real numbers that represent the degradation rates of mRNA i 
and protein i, respectively. ir  is a positive constant 
representing the rate of translating mRNA i to protein i. 

)(( tpci  is a nonlinear function of ,),(1 tp )(tpn  
representing the regulation function of gene i and represents 
the relative promoter or repressor activity of all possible 
proteins to gene i  as a function of the concentrations )(tp of 
all possible proteins. 
     The top equation in model (1) describes the 
transcriptional process. The bottom equation in model (1) 
describes the translational process. The term )(tmr ii  reflects 
the fact that one protein is translated from only one mRNA 
molecule. On the other hand, one gene or mRNA is 
generally activated or repressed by multiple proteins in the 
transcriptional process indicated in the definition of 
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which called the “SUM” logic [24]. The regulation function 
))(( tpc jij  is a function of the Hill form [14, 24] as follows: 
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if transcription factor j is a repressor of gene i, or 
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if transcription factor j is an activator of gene i,  where jb  
are positive constants, jh  are the Hill coefficient 
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representing the degree of cooperativity.  ija  are 
nonnegative constants. Note that  
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Then system (1) can be rewritten as follows 
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            for i=1,2,…,n. 
where F = (fij) is an n×n matrix representing regulatory 
relationships of the network, which is defined as: fij = 0 if 
transcription factor j does not regulate gene i; fij = aij if 
transcription factor j activates gene i; and fij = -aij if 
transcription factor j represses gene i. li is a constant and is 
defined as ∑

∈
=

Rej
iji al , where Re is the set of repressors of 

gene i. Note that  
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   Model (2) can be rewritten in the vector-matrix format as 
follows: 
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     Model (2) or (4) has parameters

imk , 
ipk ,  ir , ija and jb (i, 

j=1,2,…, n), which in total are (n2+4n). In reality, many 
ija ’s are zeros. In this study, it is assumed that F is 

nonsingular and its structure is known (that is, know that 
which elements of F are zeros). In model (2) or (4) 
parameters 

imk , 
ipk , ir , and ija  (i, j=1,2,…, n) are linear. 

However, jb  (j=1,2,…, n) are nonlinear in n functions of 
expression (3).  

III. PARAMETER ESTIMATION METHOD 
     In this study, assume that Hill coefficients jh (j=1,2,..,n) 
are known. The task of parameter estimation for model (2) 
or (4) is: given data )( stm and )( stp measured at time point 

st  (s=1,2, …, S), estimate parameters 
imk , 

ipk , ir , ija and 

jb (i, j=1,2,…, n).  

  A. Parameter estimation in the translational process      
To estimate parameters 

ipk and ir  in the bottom equation of 
model (2) or (4), the following squares error function (cost 
function) can be formed: 
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for i=1,2,…, n, where ip~  is the estimated derivative of ip .  

     Given a time-series data )( stx (s=1,2,…,S), the estimated 

derivative )(~
stx can be calculated by the following formula: 
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for s=3, …, S-2. 
     Minimizing the cost function (5) gives the estimates of 
parameter 

ipk and ir , which can be easily done by ordinary 
least squares method.  

    B. Parameter estimation in the transcriptional process     
To estimate the parameters in the top equation of model (2) 
or (4), the following squares error function (cost function) 
can be formed: 

     
2

1
])),(()([)(~∑

=
++−−=

S

s
ssms LBtpFgtmKtmJ           (7) 

Minimizing the cost function (7) can give the estimates of 
parameters 

imk , ija and jb (i, j=1,2,…, n). However, it is 
much complex to minimize the cost function (7) as 
parameters jb ( j=1,2,…, n) are nonlinear in the model (2) or 
(4). In this study, we propose a method to estimate the 
parameters in the top equation of model (2) or (4). From 
optimization principle  
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Therefore, we propose the following iterative algorithm to 
estimate the parameters 

imk , ija and jb (i, j=1,2,…, n) in the 
top equation of model (2) or (4). 
   Step 1. Choose the initial guess 0B̂ and set k=0 
   Step 2. Substitute kB̂ to the cost function (7) and minimize 
the cost function (7) with respect to 

imk and ija  by ordinary 
least squares method to get the solutions. Actually, the cost 

function (7) can be rewritten as ∑
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for i=1,2,...,n. Applying ordinary least squares method to 
each

imJ gives the estimates of 
imk and ija  (j=1,2,..,n) for 

i=1,2,…, n . Collect all the estimates in the matrix or vector 
format as 1ˆ +k

mK , 1ˆ +kL , 1ˆ +kF which have the same structure as 

mK , L , and F in model (4), respectively. 

   Step3. Substitute 1ˆ +k
mK , 1+kL , 1+kF to the cost function (7) 

and minimize the cost function with respect to B.  
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and )(1
s
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j tX + is the jth component of the vector 
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From the above derivation, for given 1ˆ +k
mK , 1+kL , 1+kF , the 

cost function (7) with respect to B  can be reduced to 
minimizing the cost function 

jmJ  defined in (10) with 

respect to jh
jb , which is the cost function for parameter 

estimation of the linear fractional model. Denote the 
estimation of jb  by 1ˆ +k

jb (j=1, 2,…, n) which can be 
calculated as [25] 
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Collect all the estimates in a vector 1ˆ +kB  which have the 
same structure as B in model (4). 
     Step 4. Let k=k+1 and repeat Steps 2 and 3 until a stop 
criterion is met. In this paper the stopping criteria is set as, 

                       ε≤− + kkk JJJ /)( 1  
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ε  is a preset small positive number, for example 510 − . 

IV. ILLUSTRATIVE EXAMPLES 
To illustrate the performance of the presented method, 

we consider gene toggle switch network shown in Figure 1. 
In this network, two genes are repressed by each other and 
activated by their own protein [26]. 

 
Figure 1. Structure of gene toggle switch network 

     
The mathematical model of gene toggle switch networks can 
be described as follows [23, 26]: 
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Figure 2. Trajectories of states of system (13) 

     
In this study, the true parameter values in gene toggle 

network (12) are set as in Column two of Table 1. The time 
series data from network (13) is generated and shown in 
Figure 2. Network (12) is stable after 20 minutes. Therefore, 
we don’t use the simulated data after 20 minutes. There is no 
noise added on the artificial data in the simulation, so they 
can be considered as noise-free measurements. Nevertheless, 
noises can be introduced in numerically calculating the 
derivatives by finite difference formulas (6). In general, the 
higher the sampling frequency and more data points are 
used, the more accurate the numerical derivatives are. On the 
other hand, in practice we may not obtain data with high 
frequency because of experimental limitations. In this study, 
the sampling frequency is 1.67Hz (100 data points per 
minute).  

  
Table 1. The true parameter values in system (12), 

estimated parameter value, and relative estimation errors  
Parameter True value Estimated value REE (%) 

km1 1.2 1.1533 3.89 
km2 1.2 1.1287 5.94 
a11 2 1.9388 3.06 
a12 3 2.9295 2.35 
a21 1 0.9342 6.58 
a22 2.5 2.3047 7.81 
b1 2 1.8264 8.68 
b2 1.5 1.4136 5.76 
kp1 0.7 0.6973 0.38 
kp2 0.7 0.6957 0.62 
r1 0.8 0.7974 0.33 
r2 0.9 0.8944 0.62 

 
We can apply the proposed method to estimating 

parameters in model (12). The relative estimation error 
(REE) is employed to measure the accuracy of estimation 
and is defined as follows: 
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     Columns 3 and 4 of Table 1 list the estimated parameter 
values and the relative estimation errors, respectively. From 
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Table 1, the relative estimation errors are less than 10% for 
all parameters, which indicates that the proposed method can 
accurately estimate parameters in this model.    

V. CONCLUSION 
In this paper, we have presented a new method for 

estimating parameters in genetic regulatory networks with 
SUM logic. In nature, the estimation of parameters in 
translational process of this kind of genetic regulatory 
networks is a nonlinear optimization problem, which cannot 
be easily solved. In the presented methods, the solution is 
given by 1) independently solving n linear least squares 
problems and 2) independently solving n linear fractional 
model parameter estimation problems. Both kinds of 
problems can be easily solved. The result from the 
illustrative example has shown that the proposed method can 
accurately estimate the parameters in genetic regulatory 
networks with SUM logic. This study assumed that matrix F 
in model (4) was nonsingular, which may be not true for 
some genetic regulatory networks. In the future, we will 
develop a more general method for Step 3 in Section III. 
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