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Abstract— Electroencephalography (EEG) has been used for
decades to measure the brain’s electrical activity. Planning and
performing a complex movement (e.g., reaching and grasping)
requires the coordination of muscles by electrical activity that
can be recorded with scalp EEG from relevant regions of the
cortex. Prior studies, utilizing motion capture and kinematic
measures, have shown that an augmented reality feedback
system for rehabilitation of stroke patients can help patients
develop new motor plans and perform reaching tasks more
accurately. Historically, traditional signal analysis techniques
have been utilized to quantify changes in EEG when subjects
perform common, simple movements. These techniques have
included measures of event-related potentials in the time and
frequency domains (e.g., energy and coherence measures). In
this study, a more advanced, nonlinear, analysis technique,
mutual information (MI), is applied to the EEG to capture
the dynamics of functional connections between brain sites. In
particular, the cortical activity that results from the planning
and execution of novel reach trajectories by normal subjects
in an augmented reality system was quantified by using
statistically significant MI interactions between brain sites over
time. The results show that, during the preparation for as
well as the execution of a reach, the functional connectivity of
the brain changes in a consistent manner over time, in terms
of both the number and strength of cortical connections. A
similar analysis of EEG from stroke patients may provide new
insights into the functional deficiencies developed in the brain
after stroke, and contribute to evaluation, and possibly the
design, of novel therapeutic schemes within the framework of
rehabilitation and BMI (brain machine interface).

I. INTRODUCTION

A. Background

The EEG signal, due to its high temporal resolution, is
the most commonly used signal to analyze brain function.
The complexity of the EEG is paralleled with the complexity
of the brain’s operation [1]. Arguably, processing of EEG in
terms of time-locked activities has not advanced greatly over
the past decades. Event-related potential (ERP) analysis in
the frequency domain [2]–[4] typically looks at two param-
eters: event-related synchronization (ERS) and event-related
desynchronization (ERD). Based upon these measures, prior
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studies have been able to identify cortical locations that play
a role in the planning and execution of certain movements
[5]. ERPs have been used to create cortical current density
maps corresponding to movement planning and execution
[6], as well as to quantify learning of a novel movement
[7]. In addition, surface EEG coherence analysis [8]–[10]
has been used to investigate the cortical connections that are
present during the planning and execution of simple motor
tasks which are either absent or spatially shifted in stroke
patients [11].

It is believed that these techniques fail to capture all of
the complexity of the EEG signal and, by extrapolation, the
underlying cortical activity. The EEG is characterized by
limit cycles, bursting behavior, jump phenomena, amplitude
dependent behavior, and frequency harmonics. Because of
these nonlinear, and possibly chaotic characteristics of the
EEG signal, nonlinear dynamic analysis of the EEG may be
employed to capture additional and/or essential characteris-
tics of the signal [12].

B. Mixed Reality Rehabilitation

This study was conducted with Arizona State University’s
School of Arts, Media and Engineering mixed reality reha-
bilitation (MRRehab) system and School of Biological and
Health Systems Engineering EEG recording systems. The
MRRehab system provides continuous, real-time auditory
and visual feedback using state-of-the-art motion capture
analysis of the subject’s reach, with feedback coding for nu-
merous parameters including reach trajectory, hand velocity,
and wrist rotation. The EEG system is capable of sampling
at 2 kHz per channel up to 64 EEG channels.

II. METHODS

A. Experimental Setup

This study involved 19 non-impaired right-handed subjects
(see Table I) performing a reaching and grasping task with
their right arm to three targets. Each subject participated
in one session segmented into four blocks. Each block
consisted of 30 reaches, resulting to a total of 120 reaches
per subject. At the beginning of the session, the subject had
EEG electrodes applied to the head (scalp) and IR reflective
markers to the right arm. Next, the subject was placed in the

TABLE I

PARTICIPANT DEMOGRAPHICS

# Subjects
Age Range Mean AgeMale Female

10 9 19–58 years 24.1 years
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Fig. 1. Visual of normal and altered reach hulls. (a) Normal reach trajectory
and supination hulls. (b) Altered reach trajectory and supination hulls.

MRRehab system and allowed to investigate the space freely.
By moving the arm in various ways, the subject became
accustomed to the audio and visual feedback the MRRehab
system provided. Following the free exploration of the space,
each subject was guided through feedback examples and
a single test trial was run to confirm understanding. Once
the subject gained an understanding of the system, Block 1
began.

In Block 1 the subjects reached to and grasped a cone
placed at three different locations. These reaches were de-
signed to be conducted using a normal trajectory (see Fig. 1
(a)). Following the completion of the 30 reaches (10 reaches
per cone in a random order), the subjects were allowed
a voluntary rest period. Block 2 began following the rest
period and the reaches greatly differed from those in Block
1. The subjects were forced to learn to complete a reach
with a novel, highly perturbed trajectory and wrist rotation
having the cones placed at the same positions as in Block
1 (see Fig. 1 (b)). The altered reach consisted of an initial
deviation to the left and over-rotation of the wrist. Following
30 reaches, the subjects were allowed another voluntary rest
period. Next, Block 3 was performed as a repetition of Block
1. Following another voluntary rest period, Block 4 was
performed as a repetition of Block 2.

Although the trajectory and wrist rotation differed between
Blocks 1 and 2, and Blocks 3 and 4, the sequence of events
was identical within and across reaches. Approximately
seven seconds before a Go-Cue is given the trial begins
with a complete image displayed on the screen. Six seconds
before the Go-Cue, the image explodes into numerous pieces.
Three seconds before the Go-Cue, one of the three cones
lights up, indicating the specific target for the upcoming trial.
Finally, the Go-Cue is issued by the appearance of a green
box on the screen.

B. Data

Scalp EEG recordings from 19 subjects were acquired and
analyzed. Measurements of head dimensions and electrode
placement were performed by professional EEG technicians
and electrode impedances were kept below 5 kΩ. EEG sig-
nals were recorded by a Neuroscan EEG machine (Neurosoft
Inc., VA, USA) from 19 electrodes overlaying 6 brain regions
using a standard EEG montage (international 10-20 system)
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Fig. 2. Fraction of pairs with significant mutual information across reaches
over time per block for all four blocks in one subject. The brain’s functional
connectivity, derived from statistically significant MI profiles, is depicted
over time (with resolution of 1 sec) per block (different color per block).
At approximately t = −7 sec the visual feedback begins the initiation of
a new reach. At precisely t = −3 sec the cone (one of three possible) the
subject must reach to is highlighted. At t = 0 sec the Go-Cue is presented
to the subject. The subject initiates the reach to the cone (at about t = +0.5
sec), grasps the cone, and returns (within 5 to 10 sec) to the rest position.

including averaged mastoid references. The analog data were
low-pass filtered at 500 Hz and then digitized at 2000 Hz
(sampling frequency) with a 16 bit A/D and stored on a
digital hard drive in Neuroscan data format.

C. Mutual Information

Shannon first introduced the concept of mutual informa-
tion, which two random variables X and Y may share, as
the entropy (uncertainty) that remains about them after their
joint entropy is subtracted from the sum of their individual
entropies. In mathematical terms, MI can be expressed as:

MI(X ;Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the joint probability density of X and Y , and
p(x) and p(y) are the marginal probability density functions
of X and Y , respectively [13], [14]. MI can capture the
information shared between two variables even if they are
nonlinearly related.

In our analysis, the MI was calculated from 1 sec (2000
samples) non-overlapping, sequential EEG segments over the
duration of a trial (10 sec before to 10 sec after the Go-Cue
signal), for all electrode pair combinations, resulting in 171
MI values per second per reach. The fraction of statistically
significant MI pairs at each time point (1 sec EEG segment)
per block and subject was estimated as follows. First, the
statistical threshold for significant MI values per subject was
established from Block 1. This was performed by estimating
the MIs from all electrode pairs at all time points across
reaches in Block 1 for each subject. The mean, M , and
standard deviation, SD, of all thus estimated MIs were then
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Fig. 3. Histogram of the electrode sites that exhibit significant MI with
the rest of sites during the planning period (-3 to -2 sec) for the same block
and subject as in Fig. 2. The contralateral to the right arm motor cortex
(C3) is shown to be clearly most active of all brain sites during that period
for planning of movement.

calculated. Second, the mean of each electrode pair’s MI at a
time point across all reaches per block was calculated. Third,
if this mean MI value was greater than M + 0.5SD, this
electrode pair’s MI was considered significant at that time
point. Finally, for each time point and block, the number of
electrode pairs with significant MI was summed and divided
by the total number of electrode pairs (19C2 = 171) to
produce the fraction of pairs of brain sites with significant
MI at a time point per block and subject.

III. RESULTS

A. Information Exchange

The probabilistic measure of MI can capture the common
information present within a pair of brain sites. MI may
reflect linear or nonlinear interactions between sites without
any a priori assumption (e.g., number or width of power
frequency bands) or particular patterns in the EEG that
may constitute information. Thus, it can theoretically pro-
vide information about the functional connectivity of brain
regions that participate in the planning and execution of
movement. Fig. 2 shows the fraction of electrode pairs with
statistically significant MI estimated for non-overlapping 1
second segments of EEG data from t = −10 sec to t = +10
sec around the Go-Cue signal at t = 0 sec, for one of our
subjects. These same general trends were found across all
19 subjects. Fig. 2 clearly shows that long before (-10 sec
to -8 sec) the Go-Cue is presented to the subject, a large
number of pairs of brain sites are functionally connected
(statistically significant MIs). As the subject prepares for
the reach (-5 sec to 0 sec), a progressive reduction in the
number of the functionally connected pairs is observed, with
a parallel maintenance of the ones that are relevant to the
brain’s operation at the time, for example, planning in the
motor cortex (see topographical histogram in Fig. 3 and
map in Fig. 4). Following the reach (+5 sec to +10 sec),
the connectivity returns with a spatial spread to the elevated
levels per block that existed long before the reach.

B. Information Network

For every 1 sec, MI was used to produce network con-
nectivity plots. These plots show the functional connections
between brain sites that have significant MI values. In Fig.
4 we show such a plot for one subject in Block 2 at (a)
t = −10 sec and (b) t = −3 sec. Based on such plots, the
brain’s functional network at work during the experiment can
be monitored.

IV. CONCLUSIONS AND FUTURE WORK

The results presented herein demonstrate the application
of a promising signal processing technique, MI, in order
to measure the functional connectivity between brain sites
over time during reaching and grasping tasks. The technique
provides valuable information as to the brain’s operation at
specific times (e.g., planning in the motor cortex following
target identification; -3 to -2 sec). It is expected that results
from the application of this technique to EEG from stroke
patients during reaching and grasping tasks would contribute
to a better understanding of the impaired network, as well
as be used as a valuable monitoring tool for the progress of
the process of rehabilitation.

Employment of directional information flow measures
may shed more light than MI on the involved brain inter-
actions. Expanding upon the bidirectional information flow
measure of MI, cross Lyapunov exponents and transfer of en-
tropy [15], [16], both directional information flow measures,
are expected to elucidate the directionality of the observed
functional connections of the brain sites over time, and hence
also the localization of brain activity during the planning and
execution of a motor task.

In our future work, we also plan to identify the key
predictive EEG features in motor learning integrating our
findings with the available ones from kinematic analysis.
One route is to first use kinematic features to mine the motor
learning patterns for individual subjects, as well as groups of
subjects, and then correlate them with corresponding features
from the EEG analysis for each pattern (both individual
and group). In this experiment, three kinematic parameters
(trajectory error, supination error, and number of phases of
the velocity profile [17]) were calculated and recorded in
parallel with the EEG. We will use these three features of
kinematics to identify motor learning patterns at the two
levels of individual and group of subjects.

At the individual level, we will investigate periods that
clearly show different patterns in a subject’s kinematic
performance after a transition compared to before. Initial
kinematic analysis along these lines has revealed the pres-
ence of a transition time for certain kinematic parameters that
may denote learning. Computationally, the transition time
can be detected by using a mixture of linear regression fits
to the data. Fig. 5 shows an example where a subject has
two phases in terms of trajectory error over reaches (a two-
piece linear regression has a better fit than a single linear
regression in this case). This piecewise regression implies
that, within a subject and within a block, there is a transition
in the motor learning, possibly the point where the subject
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Fig. 4. Functional connectivity plots in Block 2 for the same subject as in Fig. 2. (a) Network at t = −10 sec. (b) Network at t = −3 sec. Only the
significant MI pairs of sites are connected by lines. The thickness of the line corresponds to the value of MI.

Fig. 5. Trajectory error versus reaches and its best-fit regression. The
trajectory error values from kinematic analysis for a subject’s reach versus
all 30 reaches in Block 2 are shown. They are fit with two different best-
fit strategies: lines with (blue curve), and without (green curve) piecewise
robust regression.

has learned the novel motor plan and from then on is just
recalling the plan.

At the group level, we will apply clustering techniques to
identify subject clusters where each group shares a similar
motor learning strategy. Initial analysis of the kinematic
parameters has revealed the presence of multiple different
groups of learners; some subjects appeared to focus on
correcting their trajectory error, others on their supination
error, and others on their velocity. Clustering will be based
on trends kinematic features exhibit across reaches. Once
such an analysis of kinematics is complete, features from
the EEG (e.g., MI values and trends) will be mined to
further determine correlations at both the individual and
group levels.
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