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Abstract—Considerable evidences have shown a decrease of neu-

ronal activity in the left frontal lobe of depressed patients, but

the underlying cortical network is still unclear. The present study
intends to investigate the conscious-state brain network patterns

in depressed patients compared with control individuals. Cortical

functional connectivity is quantified by the partial directed coherence
(PDC) analysis of multichannel EEG signals from 12 depressed

patients and 12 healthy volunteers. The corresponding PDC matrices
are first converted into unweighted graphs by applying a threshold

to obtain the topographic property in-degree (Kin). A significantly

larger Kin in the left hemisphere is identified in depressed patients,
while a symmetric pattern is found in the control group. Another

two topographic measures, i.e., clustering coefficients (C) and char-

acteristic path length (L), are obtained from the original weighted
PDC digraphs. Compared with control individuals, significantly

smaller C and L are revealed in the depression group, indicating

a random network-like architecture due to affective disorder. This
study thereby provides further support for the presence of a

hemispheric asymmetry syndrome in the depressed patients. More
importantly, we present evidence that depression is characterized by

a loss of optimal small-world network characteristics in conscious

state.

Index Terms—Depression, electroencephalogram, partial directed

coherence, α-waves, small-world network.

I. Introduction

OVer the last decade, the development of non-invasive

methods based upon hemodynamic or electro-magnetic

measurements improved our understanding of the activation of

cerebral areas underlying different cognitive and/or psychotic

states. According to [1], increased left frontal alpha power,

suggesting a left-hemispheric hypo-activation, is believed to be a

stable trait-like marker of depression. Since then, several studies

have confirmed that depressed patients show an asymmetric

pattern of cortical activation [2], [3]. The default asymmetric

mode of depressed patients is mainly based upon the finding

of a relative decrease in neural activity. Nevertheless, direct
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evidence for temporal correlation of resting-state neural activity

between different cortical regions is lacking. Moreover, a number

of key questions still remain, chief among them is whether the

hypo-activation in the left frontal cortex shows an abnormally

organized or disrupted cortical connectivity pattern in depressed

patients. One possible way to address this question is to study the

correlation between signals of brain activity collected from differ-

ent cortical regions. In this regard, functional connectivity which

describes the interactions between different cortical regions with

both the direction and the strength of the information flow, is

viewed as central for comprehending the organized behavior of

cortical regions beyond the simple mapping of their activity [4].

A number of approaches have been proposed to estimate

the functional connectivity which have led to a new insight

into understanding inter- and intra-hemispheric interactions un-

der various physiological or psychopathologic conditions [5].

Among these estimators, partial directed coherence (PDC) anal-

ysis, which is a representation of Granger causality [6] in the

frequency domain, is of particular interest because of its ability

to distinguish direct and indirect causal influence regardless of

any common disturbing influences or sources [7]. PDC analysis

thereby offers an opportunity for quantitatively analyzing and

comparing the straightforward functional connectivity of the

depressed patients. In our previous study, a lower frontal cortical

interdependence within the beta band (13-30 Hz) was demon-

strated in depressed patients in a resting state as well as a mental

arithmetic task [8]. Indeed, considerable evidence has reported

the loss of functional connectivity in depression [9]; however,

it is still unclear how the decrease of functional connectivity

is associated with a change in the global organization of the

cortical network. Therefore, to extend the previous study, the

graph theoretic analysis is employed in the present study to

evaluate the PDC networks, when the participants are in an eye-

closed wakeful resting state.

In graph theory, networks can be represented with inter-

connected nodes/vertices (Fig.1). Hence, graph theoretical met-

rics such as in-degree (Kin), clustering coefficient (C) and char-

acteristic path length (L) could be employed to quantify the

functional connectivity networks [10], [11]. According to [12],

a graph with many relatively short connections and few random

long distance connections is designated as a “small-world” net-

work, which is often associated with the presence of clustering,

denoted by high values of C and a short L [11], [12]. There

have been indications that such a network pattern, may be

more efficient in exchanging information on both a local and

a global scale [13]. Over the last decade, a variety of biological

and technological networks have been shown with small-world
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features [10], [11]. Most recently, Stam and colleagues evidenced

a loss of the optimal small-world features in the functional

connectivity networks of Alzheimer’s patients [14]. Therefore,

in this study we are going to address the following questions by

means of PDC analysis and graphic indexes: is the functional

connectivity abnormally organized in depressed patients under

conscious state? If so, what is the “architecture” of functional

connectivity networks in depressed patients?

II. Methods & Materials

A. Subjects

A total of 24 subjects participated in this study: 12 right-

handed patients experiencing their first reported episode of

depression (male/female=7/5, age: 37.2 ± 11.8 years) referred

to the Shanghai Mental Health Center and 12 right-handed

age- and gender-matched control subjects (male/female=6/6,

age: 37.5 ± 11.7 years) without history of depression or any

other psychopathology. All depressed subjects fulfilled CCMD-3

(F32: depressive episode, Chinese Psychiatric Association, 2001)

and ICD-10 (the 10th revision of International Classification of

Diseases) diagnostic criteria and were not on any medication for

10 days before the experiments. Informed consent was obtained

from each subject, which was approved by the local ethics

committee in compliance with the Declaration of Helsinki.

B. EEG recording

Continuous EEG was acquired with Ag-AgCl electrodes at

Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,

T5, and T6 (Fig.1(a)), complying with the international 10-

20 system with the reference to linked earlobes using a 16-

channel EEG system (Model: Sunray, LQWY-N, Guangzhou,

China). EEGs were recorded in an acoustically and electrically

shielded room while participants remaining seated in a resting

state with their eyes closed for 5 min. The raw EEG recordings

for each subject were digitized at 100 Hz with a 12-bit A/D

converter and filtered into 0.5-30 Hz. Data containing eye blinks,

excessive muscle activity, and movements of electrodes in the

recordings were manually removed in an offline visual analysis.

For computational simplicity, we created a data set containing

reliable artifact-free 2048 samples of 16 channel EEG activity

and only one recording per subject was selected for the further

analysis in this study.

C. Functional connectivity estimation and graph theoretic anal-

ysis

The functional connectivity was estimated with PDC between

all pair-wise combinations of EEG channels [7]. PDC quantifies

the directed interdependence of Granger causality between any

two signals in a multivariate set at each frequency. Mathematical

details of PDC have been described in previous paper [8].

Given the relative temporal stability of alpha asymmetry and

its potential relation to deficits in depression [1]–[3], rhyth-

mic patterns of activity in the (8-13 Hz) range seemed to be

an appropriate physiological signal for investigating functional

connectivity patterns of depressed patients. Hence, the mean

values within the alpha band, referred as αPDC hereafter, were

Fig. 1. Average connectivity networks for control subjects (b) and
depressed patients (c) obtained from PDC in the alpha frequency band
under conscious resting conditions. They show the 20% of the greatest
connections in each group. Here only edges shared by at least four
experimental subjects are shown. Flows direction is represented by an
arrow, while intensity is coded by its width. Schematic image of the
international 10-20 system, indicating the positions of the electrodes
investigated in the present study is also demonstrated (a).

first compared with the threshold in the same frequency band

following the procedure described in [20]. Then, significant

greater (p < 0.05) causal interdependence formed an M × M

(M=16 in this study) matrix B, where each element Bi j contains

the value of the αPDC from the channel j to i. Based upon the

αPDC matrix of all pair-wise combinations of electrodes, three

graph theoretical measures, e.g., Kin, C, and L were derived to

investigate cortical connectivity patterns of depressed patients.

1) In-degree and asymmetry pattern: Since there have been

several reports [1]–[3] of hypo-activation of the left frontal lobe

of depressed patients, we intend to demonstrate that decreased

activity in the left cortex represents abnormal communication to

other brain areas. To this end, the mean Kin in two hemispheres,

i.e., (Kin−le f t, Kin−right), were employed to test asymmetry in

cortical networks. The Kin of a specific vertex i (Kin i) is the

total number of afferent connections towards the node i, and the

arithmetical average of Kin of all nodes within a region of interest

(ROI) is denoted as the mean Kin: Kin = ΣiKin i/Nnod, where

Nnod is the total number of vertexes in the ROI. Kin has a clear

functional interpretations, i.e., a high Kin indicates that a neural

region is influenced by a large number of other areas [11], [16].

To obtain Kin, the weighted digraph is converted into a binary

one by applying a threshold. For example, when Bi j exceeds a

threshold value, an edge is considered to exist from the node

j to node i. A wide range of threshold, between 0.14 and 0.30

with step increment of 0.02, was initially employed to obtain the

asymmetric hemisphere Kin pattern.

2) Clustering coefficient and characteristic path length for a

weighted digraph: The clustering coefficient is an index of the

local inter-connectedness of the graph whereas the characteristic

path length is an indicator of its overall connectedness [11].

Optimal brain functioning requires a balance between local spe-

cialization and global integration [10]–[12]. Most graph theory

studies to date have used symmetrical measures to construct

undirected binary graphs, however, neglect the important weight

and direction information [10]. Hence, the weighted directed

networks from the αPDC matrix were derived to compute the

weighted clustering coefficients (Cw) [17] and characteristic path

length (Lw) [11]. Briefly, the binary clustering coefficient for a

vertex i is the ratio between the number of triangles in the graph

with i as one vertex and the number of all possible triangles that
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it could have formed. The Cw of node i, in addition, incorporates

the weights of edges into the calculation:

Cw i =

∑
j�i

∑
h�i;h� j(B

1/3

i j
+ B

1/3

ji
)(B

1/3
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)(B

1/3

jh
+ B

1/3

h j
)
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(1)

where B
1/3

i j
is the cubic root of each elements from the asym-

metric weighted αPDC matrix and A is the adjacency matrix

(Ai j(i� j)=1 for Bi j(i� j) � 0). Then the weighted clustering coeffi-

cients of the graph could be obtained by averaging Cw i over the

M vertices: Cw = ΣiCw i/M.

For a weighted digraph, the path with the minimum number

of edges may not be the the optimal one. Hence, the definition

of the characteristic path length of a weighted graph could be

extended as the smallest sum of the edge lengths throughout all

the possible paths from i to j [11]. In this study, the length of an

edge is defined as the reciprocal of the edge weight, i.e., 1/Bi j,

which thereby could be employed to obtain the distance matrix

(D) and Lw:

Lw =

∑
i� j Di j

M(M − 1)
(2)

According to their definition, both Cw and Lw depend not

only upon network structure but also on network size and

edge weights. Specifically, a lower level of mean αPDC could

influence the calculation of Cw and Lw, regardless of structure

changes in networks. To obtain the salient feature of the network

structure in depressed patients, which is free from the effect of

the network size and different mean level of edge weights, Cw

and Lw are normalized with those of a weighted-edge preserved

random network, Cw/C
random
w and Lw/L

random
w .

D. Statistical analysis

Statistical analysis is done with SPSS15 for MS-Windows.

Significant difference between the Kin calculated in the two pop-

ulations is tested with ANOVA. Specifically, a one-way ANOVA

is initially employed to obtain the statistical difference of Kin

in both groups. The factor is GROUP (depressed vs. control).

Moreover, two separate ANOVAs with the factor HEMISPHERE

(left vs. right) are conducted to investigate the asymmetric pattern

for both groups. A student paired t-test is also performed to test

the difference of clustering coefficients and characteristic path

length for both groups. All analysis were performed with the

significance level set at 0.05.

III. Results

As an example of the estimated networks for the two groups,

Fig.1 demonstrates the average functional connectivity calculated

in the α frequency band. The figure shows the average intensity

of 20% of the greater connections for each group. Compared

with the depressed patients who present an asymmetric pattern

(Fig.1(c)), the control group shows a trend of stronger cortical

connectivity and a symmetric pattern of functional connectivity

among various cortical regions (Fig.1(b)). However, the “archi-

tecture” difference between both groups is hard to obtain through

examining the original graphs. Therefore, a graph theoretical

approach was employed to quantitatively characterize the topo-

graphical properties. Here, the graphs in Fig.1 only represent

group average results and serve primarily for display purpose.
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Fig. 2. (a) Average in-degree (Kin) for the depressed patients (gray
circles) and the control subjects (black squares) as a function of threshold
values T (0.14 ≤ T ≤ 0.30). Error bars correspond to standard error of
the mean (SEM). Asterisk indicates the threshold values at which the
difference between the two groups is significant (p < 0.01). Compared
to depressed patients, Kin is statistically higher in the control group. To
evaluate the asymmetry of different hemispheric functional connectivity,
Kin is divided into two parts: Kin−le f t (down-triangle)and Kin−right (up-
triangle) for control (b) and depressed (c) subjects. An asymmetric
pattern is identified in depressed patients, while no statistical difference
is detected between Kin−le f t and Kin−right in control group.

The mean Kin as a function of threshold for the two groups and

two hemispheres is presented in Fig.2. ANOVA performed on the

parameter Kin from two groups shows significant difference for

the factor GROUP (F=28.37, p < 0.001). Post-hoc tests reveal

a consistently smaller (p < 0.01) Kin of depressed patients for

the whole threshold range (Fig.2(a)), indicating a significantly

lower level of functional connectivity in depressed patients.

According to [18], the decreases of cortical thickness, neuronal

sizes and neuronal and glial densities mainly in the frontal cortex

of the depressed patients could result in the reduced cortical

functional connectivity. This result later had also been confirmed

by functional imaging (PET) studies [19]. More importantly,

statistical analysis of asymmetric pattern for both groups reveals

distinct results. For instance, significant difference for the factor

HEMISPHERE (F=10.33, p = 0.003) is disclosed in depressed

group. Moreover, post-hoc tests reveal a significantly (p < 0.01)

greater Kin−le f t for the whole threshold range (Fig.2(c)), while no

statistical difference between Kin−le f t and Kin−right is uncovered in

the control group (Fig.2(b)). These findings point in the direction

similar to the previous electrophysiological studies which report

a left hemispheric hypo-activation in depression [1]–[3]. More

importantly, the asymmetry of Kin−le f t > Kin−right suggests that

the left hemisphere should be significantly influenced by its right

counterpart in depressed patients, which is in agreement with the

theory of hemispheric lateralization in the expression and the

experience of emotion [21].

TABLE I
The ratios between real graph theoretical attributes (Cw, Lw) and
those derived from weighted-edge preserved random networks

(Crandom
w , Lrandom

w ). 100 surrogate random networks are generated to
obtain the average Crandom

w and Lrandom
w for each subject.

Cw/C
random
w Lw/L

random
w

Present study † Control 1.09 1.10

(8-13 Hz) Depressed 1.05∗ 1.07∗

Stam and others (2009) Control 1.07 1.19

(8-10 Hz) Alzheimer 1.04 1.08
† Numbers are group average values.

Significant difference is shown with: ∗ for p < 0.05.
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It has been suggested that a small-world network represents

an optimal pattern of complex systems in terms of low “wiring

costs”, local independence, global integration, and resilience to

error [10], [11]. The implication is that a high level of clustering

and short characteristic path length could deliver high-speed

communication channels between distant parts of the system,

thereby facilitating any dynamical process that requires global

coordination and information flow [13]. Table I represents the

ratios between real graph theoretical attributes (Cw, Lw) and

those derived from weighted-edge preserved random networks

(Crandom
w , Lrandom

w ). Compared with control subjects, significantly

smaller values of Cw/C
random
w and Lw/L

random
w (Student paired

t−test, p < 0.05) were evidenced in the depressed patients, indi-

cating a loss of the optimal small-world network features. These

results are comparable to a recent work by Stam and colleagues

on the graph theoretical analysis of functional connectivity in

Alzheimer’s disease [14]. It was proposed that the depression

could be a disorder with a distributed property of large scale

functionally connected (sub-)cortical systems [19]. This view is

well agreed with the modern concept that affective disorder is

an anomaly in autonomic and functional connectivity [22] such

as Parkinson’s disease [23], schizophrenia [24], and Alzheimer’s

disease [14].

IV. Conclusion

This electro-neurophysiological study employed the PDC anal-

ysis to investigate the straightforward cortical functional connec-

tivity patterns of depressed patients under conscious resting con-

ditions. By characterizing this topography into a few summary

graphic statistics, we found that depression was characterized

by a hemispheric asymmetry syndrome and a randomized neural

network feature. These findings thereby extend a previous study

which reported a loss of small-world network properties of sleep

neuronal functional networks in depressed patients [9]. Although

EEG signals have poor spatial resolution in the present study,

the depression related cortical regions investigated are consistent

with previously reported functional neuroimaging results [19].

Nevertheless, utilization of high resolution EEG recording is

encouraged for future attempts to replicate these discrimination

effects. The emerging field of complex brain networks provides

some of the first quantitative insights into general topological

principles of cortical organization. Graph theory offers a nascent

opportunity in the proper interpretation of functional connectivity

between cortical regions in cognition or affective disorders,

providing a potentially useful tool for diagnosis and therapeutic

assessment in affective disorders.
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