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Abstract— Multivariate Granger causality in the time-

frequency domain as a representation of time-varying cortical 

connectivity in the brain has been investigated for the adult 

case. This is, however, not the case in newborns as the nature of 

the transient changes in the newborn EEG is different from 

that of adults. This paper aims to evaluate the performance of 

the time-varying versions of the two popular Granger causality 

measures, namely Partial Directed Coherence (PDC) and direct 

Directed Transfer Function (dDTF). The parameters of the 

time-varying AR, that models the inter-channel interactions, 

are estimated using Dual Extended Kalman Filter (DEKF) as it 

accounts for both non-stationarity and non-linearity behaviors 

of the EEG. Using simulated data, we show that fast changing 

cortical connectivity between channels can be measured more 

accurately using the time-varying PDC. The performance of 

the time-varying PDC is also tested on a neonatal EEG 

exhibiting seizure.  

I. PREVIOUS WORK 

tudies on the dynamical interrelations between different 

brain structures may potentially identify neural 

mechanisms of pathophysiological diseases and, therefore, 

improve clinical interventions [1]. Due to its non-invasive 

nature, high temporal resolution and low cost, scalp EEG 

remains the preferred neural activity monitoring tool for 

investigating temporo-spatial connectivity of the different 

cortical areas.   

In essence, the nature of the transient changes in the 

newborn EEG is different from that of adults. Many of the 

neonatal EEG patterns have completely different medical 

implications than when observed in later ages [1]. Moreover, 

rapid maturational changes are observed in the newborn 

brain until early infancy [2]. This imposes high inter- and 

intra-individual differences in the EEG transients during the 

neonatal period [3]. In fact, some EEG features that are 

normal at a certain stage of development become abnormal 

in a later stage [1]. As a consequence, interactions between 

the brain regions in neonates differ from those of the mature 

brain [2].    
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Multivariate autoregressive (MVAR) process, as a linear 

representation of multichannel EEG data, is able to model 

interactions between EEG channels in the form of linear 

difference equations [4]. By using this EEG representation, 

not only can the direction of the information flow between 

channels be inferred, but also the direct or indirect 

influences detected. Directed Coherence [4], Partial Directed 

Coherence (PDC) [4], Directed Transfer Function (DTF) [5] 

and direct Directed Transfer Function (dDTF) [6] are 

MVAR-based measures which have been introduced to 

determine directional influence in multivariate systems.  

The above measures assume that the underlying signals 

are stationary and that their interactions are constant over 

time. However, EEG signals are non-stationary [7, 8]. This 

implies that the mutual influence of brain cortical regions 

and, therefore, those of EEG channels do not necessarily 

show a stationary behavior. Therefore, time-varying forms 

of connectivity measures should be used.  

In this paper, nonstationary PDC and dDTF measures are 

computed for the simulated data using Dual Extended 

Kalman Filter to estimate the coefficients of the MVAR 

model. Then, the PDC measure is extracted from the 

neonatal EEG signals and the results are discussed. Previous 

studies have shown that Dual Extended Kalman Filter 

(DEKF) [9] can accurately track fast changing parameters of 

MVAR models [10]. The aim of the study is to investigate 

appropriate time-frequency representations of cortical 

connectivity during neonatal EEG seizures.  

The remainder of the paper is organized as follows. 

Section 2 describes the DEKF as well as the time-varying 

PDC and dDTF measures based on DEKF. In section 3, 

results from using simulated and EEG data are presented. 

Section 4 concludes the paper.  

II. METHODS 

A. The model 

For a time series        , a time-varying MVAR model 

of order p is defined as: 
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where           
  is a white noise vector. The matrices Ar 

are given by: 
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for r = 1, …, p. The parameter    
     reflects the time-

varying linear relationship between channel i and channel j 

at the delay r. In the stationary case, the optimum order p of 

MVAR models can be estimated using different methods 

such as Akaike Information Criterion (AIC) and Schwarz’s 

Bayesian Criterion (SBC) [11]. The model order selection is 

not straightforward for time-varying MVAR models, as this 

order can vary over time. In this study, the optimal model 

order is estimated using the ARFIT module [11] which 

evaluates the SBC for a range of p values over the entire 

data and is kept constant during the process.  

 

B. Parameter estimation using DEKF 

The DEKF [9] adapts two interlaced Extended Kalman 

filters, one for state estimation and the other for parameter 

estimation. The equivalent state space can be presented as 
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where    ,    and    are zero-mean white Gaussian noises 

with covariance matrices        and   , respectively. The 

estimator generates approximate maximum-likelihood 

estimates of the states and model parameters of a noisy time 

series simultaneously. The state x and the output y are 

assumed to be generated by a nonlinear system of equations 

with additive state (       and observation (     ) noises, 

respectively. At the same time, a second state space 

formulation is introduced for the estimation of the time-

varying parameter vector  . For the case of an M-

dimensional time-varying AR(p) model, the function F is 

linear and the state estimation part of the filter at time n can 

be formulated as follows [9]:  
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where             is the state estimation error covariance 

matrix,           is the state’s Kalman gain and     

       and          are state and output noise covariance 

matrices respectively. The vectors           (estimated 

output) and            (estimated state vector) and the 

matrices           (MVAR parameters matrix) and 

         (measurement matrix) are defined as: 
                 

(5) 

                          

     

 
 
 
 
 
            

    
    
    
     

 
 
 
 

 

                                  

The parameter estimation stage at time n is given by: 
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where           is the vectorized      containing all 

MVAR parameters,               is the parameter 

estimation error covariance matrix,            is the 

parameter’s Kalman gain,           is the parameter 

estimation error covariance matrix and             is 

defined as: 
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C. Time-varying PDC and dDTF measures 

A number of time-varying connectivity measures can be 

defined based on the following transformation of the MVAR 

parameters (Ar(n)) to the frequency domain: 
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The time-varying version of the PDC [4] is defined as: 
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where aj(n,f) is the j’th column and          is the ij’th 

element of the matrix       . 

Also, the time-varying version of the dDTF [6] is obtained 

as the product of the time-varying full frequency DTF 

(ffDTF) [6]:  
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and the time-varying partial coherence  

            
   

      

                
 (11) 

where                 is the time-varying transfer function, 

F is the number of frequency points (depending on the 

sampling rate and the frequency range) and          is the 

determinant of the minor matrix obtained by removing i’th 

row and j’th column of the cross power spectral density 

matrix        defined as: 
                         (12) 

where      denotes the time-varying estimation error 

covariance matrix. These two measures take values between 

0 and 1 where high values in a certain frequency band reflect 

a directionally linear influence from channel j to channel i in 

that band (       ).   

Time-varying PDC and dDTF can be computed based on 

the time-varying MVAR model fitted to the signal using 

Dual Extended Kalman Filtering. A surrogate data method 

with 50 realizations is then used to select the statistically 

significant values of the time-varying PDC and dDTF 

measures at 99% confidence level. All values below the 

confidence level are set to zero for illustration purposes. 

Surrogates are obtained by randomizing all samples of the 

signal to remove all causal relationships between them [12]. 

Because of the summation over frequencies in the 

denominator (Eq. 10), the dDTF function is usually much 

smaller than one. In this paper, dDTF values are focused in 0 

to 0.005 for magnifying the result and obtaining a clear 

representation.   
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III. RESULTS AND DISCUSSION 

A. Data  

1) Simulated data 

The data is obtained from a 3-dimensional MVAR(2)-

process, two damped stochastically driven oscillators (   and 

  ) and a stochastically driven relaxator    (Eq. 13). This 

process has previously been used to evaluate  time-varying 

directed interactions in multivariate neural data [10]. 

 
 

 
                              

                                             

                                   

                                   

  (13) 

For a model of length L=5000 samples, parameters      and 

     are depicted in Fig. 1. 

  
Fig. 1: Time course of the time-varying parameters in the model 

2) Newborn EEG data 

Seven monopolar channels (C3, P3, Pz, Cz, O1, T3, T5) out 

of 14 channels recorded according to the 10-20 standard [13] 

were selected from a newborn EEG dataset. Beforehand, 

channel P3 was identified by a matching pursuit-based 

algorithm [14] as the main location of seizure. Then, P3 and 

its six peripheral electrodes were selected for further 

analysis. The results of the source localization will appear 

elsewhere. The data was recorded using a Medelec Profile 

system (Medelec, Oxford Instruments, Old Woking, UK) at 

256 Hz sampling rate and marked by a pediatric neurologist 

from the Royal Children’s Hospital, Brisbane, Australia. To 

decrease the computational load, the data was filtered using 

a 0.5-30 Hz band pass filter and down-sampled at the rate of 

1/8.  

B. Results 

1) Simulated data 

Figure 2 shows the most significant values of both time-

varying PDC and dTDF measures at 99% level of 

significance after applying the surrogate data method. Both 

representations are able to reflect the time-varying partial 

connectivity from channel 2 to channel 1 and from channel 3 

to channel 1. However, the dDTF plots represent two extra 

direct influences from channel 1 to channels 2 and 3, while 

corresponding PDC measures, namely,          and          

reflect the immediate independence of       on       and 

     . Also, the dDTF values are usually very small, as the 

summation over frequency in the denominator of the 

criterion makes all values much smaller than one. Moreover, 

multiplication of two smaller than 1 values makes the 

measure even smaller. In contrast, there is no problem with 

the time-varying PDC.  For a better illustration of the dDTF 

measures, all significant values are zoomed in the interval of 

0 to 0.005 in Fig. 2.    

 
(a) 

 
(b) 

Fig. 2: PDC (panel a) and dDTF (panel b) of the model using the DEKF. 

The y-axis represents normalized frequency ([0 0.5] corresponding to [0 

Fs/2]) and the x–axis represents time direction in terms of data samples. 

2) Newborn EEG data 

Due to the superiority of the time-varying PDC compared 

to the time-varying dDTF illustrated above, only the former 

measure was applied to the EEG data. Fig. 3 illustrates the 

time-varying PDC values extracted from a 10-sec ictal EEG 

epoch. The optimum AR model order was evaluated by 

Schwarz’s Bayesian Criterion and fixed to 4 during the 

analysis. Based on visual inspection of the plots in Fig. 3 for 

all pairs of channels, a directed path graph can be suggested 

as the model of the seizure propagation within the seven 

utilized electrodes for this particular infant (Fig. 4). Note 

that the relationships within the graph are time-varying.  

 
Fig. 3: PDC measure of the EEG data. The y-axis spans frequencies from 

zero to 30 Hz and the x–axis represents time direction. 
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Fig. 4: Time-averaged static directed graph based on the time-varying 

PDC measure for the newborn ictal EEG data. Solid arrows show 

stronger relations, while dashed ones reflect weak interactions (i.e., sparse 

regions with medial values in the time-frequency plane). Note that the 

time-varying directed graph is an animating graph. 

C. Discussion and Interpretation of the Results 

The outcome of the time-varying dDTF measure using the 

simulated model shows that the mirror effect of the partial 

coherence on the ffDTF values causes erroneous results. 

This drawback of the dDTF measure can be explained by the 

effect of symmetric partial coherence matrix on the 

nonsymmetrical DTF matrix. In fact, the symmetry of the 

partial coherence matrix causes some reflections of the 

ffDTF elements about the diagonal. Also, very small values 

of the dDTF measures resulted from summation over 

frequencies in the denominator and multiplication of two 

smaller than one values makes the measure very small. 

Therefore, any comparison of the significant values between 

two channels becomes difficult. In contrast, the time-varying 

PDC is normalized between 0 and 1 and doesn’t show any 

erroneous information.  

According to Fig. 4, a unidirectional time-varying flow 

can be observed towards the left occipital and temporal 

lobes. The dominant flow starts roughly from Cz and P3, two 

electrodes with maximum outflow and terminates at O1, T3 

and T5, three electrodes with maximum inflow. The result is 

in accordance with the outcome of a matching pursuit-based 

algorithm [14] which identifies P3 as the seizure source (the 

results of the source localization will be published 

elsewhere). The strongest interaction occurs from O1 to T5 

which suggests the effect of the seizure source on the 

primary visual cortex. Moreover, T5 can be considered as the 

end point of the seizure for the considered time period, as 

there is no outflow from T5 to the other channels. 

The results also show that the time-varying version of the 

PDC based on DEKF exhibits high time-frequency 

resolution. In particular, DEKF seems capable of tracking 

the fast changing MVAR parameters for time-varying EEG 

signals. This is of high importance for seizure 

characterization, as rapid dynamic changes are observed in 

the epileptic EEG [15]. 

IV. CONCLUSION 

The results presented in this paper show the superiority of 

the DEKF-based PDC in terms of its ability to track fast 

parameter changes and at the same time, accurately identify 

interactions compared to the dDTF using the simulated data. 

This advantage is valuable for characterizing EEG 

abnormalities such as seizure in the newborn, during which 

the dynamics change rapidly [15]. 

The findings also suggest that the time-varying cortical 

connectivity analysis may potentially lead to a source 

localization approach within the inner layers of the newborn 

brain. This would be a significant development in the 

neonatal EEG signal processing field of research, as adult 

EEG source localization methods are not applicable for 

analysis of neonatal brain interactions [16]. 
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