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Abstract— Burst suppression is an electroencephalogram pat-
tern observed in states of severely reduced brain activity, such as
general anesthesia, hypothermia and anoxic brain injuries. The
burst suppression ratio (BSR), defined as the fraction of EEG
spent in suppression per epoch, is the standard quantitative
measure used to characterize burst suppression. We present a
state space model to compute a dynamic estimate of the BSR
as the instantaneous probability of suppression. We estimate
the model using an approximate EM algorithm and illustrate
its application in the analysis of rodent burst suppression
recordings under general anesthesia. Our approach removes the
need to artificially average the ratio over long epochs and allows
us to make formal statistical comparisons of burst activity at
different time points. Our state-space model suggests a more
principled way to analyze this key EEG feature that may offer
more informative assessments of its associated brain state.

I. INTRODUCTION

Burst suppression is an electroencephalogram (EEG) pat-
tern consisting of alternating high amplitude bursts and low
amplitude or isoelectric periods (see Fig.1). Burst suppres-
sion can be observed in deep state of general anesthesia,
coma associated with diffuse brain injuries, induced hy-
pothermia, epilepsy due to Ohtahara’s syndrome [1], and
postasphyctic newborn babies [2]. It is usually caused by
physical damage (e.g brain injury, lesions), or reversible
general anesthetic effects. In burst suppression less than 5%
of the cortical neurons and less than 40% of the thalamic
neurons are active during suppression [3].

Burst suppression patterns (BSPs) differ in the durations of
the alternating periods. For instance, in the case of subacute
sclerosing panencephalitis, the duration between bursts tends
to shorten with the progression of the disease [4]. In the case
of general anesthesia, BSPs produced by different anesthet-
ics show clear differences [5]. The burst suppression ratio
(BSR), a measure of the fraction of time spent in suppression
per epoch is traditionally used to characterize BSPs. The
conventions for computing BSR are chosen empirically. The
voltage threshold, which discriminates between low and
high amplitude can be set at 15 [6]-[8] or at 5 [9]-[11]
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µV , and the minimal suppression time that the EEG has
to be isoelecric is set at 100 milliseconds in some cases
[6]-[8] and 0.5 seconds in others [9]-[11]. Likewise, the
length of the epoch over which the fraction of suppression
is computed can take values from 4 [9]-[11] to 15 [6]-[8]
seconds. Finally the number of epochs that is averaged is
typically chosen to span 60 seconds [6]-[11] resulting in
only one data point per minute. The ease of computation
and its real-time application make this method appealing.
However, it offers a coarse characterization of the EEG
pattern and limits the information extracted from the data
sets. For instance, when analyzing the modulation of the BSP
caused by certain drugs and inferring from it the anesthetic
state of the brain, important dynamics taking place over
several seconds can be hidden by averaging. This approach
artificially segments the EEG signal into epochs and averages
sequences whereas the signal is continuous and changes
dynamically. Also, because different conventions are used
to estimate the BSR, comparing results across studies is
challenging [12]. The need for a more precise definition
of BSR is thus motivated by the interest in inferring the
dynamics of brain states from the relevant variations in
BSPs. A more rigorous definition also facilitates achieving
consistency between results across different studies, opening
the door for insightful comparisons.

The BSP can be described by a series of 1s (suppression)
and 0s (no suppression). This definition casts the problem
in a dynamic Bernoulli process framework. Therefore, we
can analyze it using a state-space model to characterize
the burst suppression ratio as the probability of suppression
as a function of time. A Bernoulli probability model is
used to describe the suppression occurrences and a Gaussian
state equation describes the unobservable brain state whose
evolution we want to track. We estimate the model using
an approximate expectation maximization (EM) algorithm
[13][14], and compute the dynamic estimate of the BSR. We
illustrate our method by computing the BSR before and after
the administration of the cholinergic agonist physostigmine.
We show how our approach may be used to conduct formal
statistical analyses of the BSR.

II. MODEL DEFINITION

A state space model is completely characterized by two
equations: a state equation and an observation equation. The
state equation defines the unobservable state process whose
evolution we wish to track over time. The state in our case
represents the brain state of the subject. We define our state
to be positively correlated with the BSR. That is as the state
increases the BSR increases and as the state decreases the
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Fig. 1. The EEG signals of a rat, awake, under 2.5% and 4 % Isoflurane.

BSR decreases. The observation equation describes how the
observed data are related to the unobservable state. In our
case, the observed data are the sequence of 1s and 0s which
represent the suppression or not of a burst respectively. We
define a burst suppression to be a sequence of low amplitude
EEG voltages over at least a 100 milliseconds. Our objective
is thus to estimate the states and the parameters of the model
from the observed data and use these estimates to compute
the dynamic estimate of the BSR with confidence intervals.
Our experiment consists of N discrete time steps indexed
1, ..., N . Let bi be the indicator of the event at time i which
is 1 if the event is suppressed and 0 otherwise. Let pi denote
the probability of a suppression at time i. In our state space
model we assume that the probability pi is governed by an
unobservable state variable xi. The observation model can
be described by the Bernoulli probability mass function

Pr(bi|pi, xi) = pbii (1− pi)1−bi , (1)

where pi is defined by the logistic equation

pi =
exp(xi)

1 + exp(xi)
. (2)

The logistic function is commonly used to model how the
probability of an event is affected by one or many explana-
tory variables. In our case it ensures that the probability pi
is always between 0 and 1 as the state xi varies over all real
numbers. We define the unobserved state model by a random
walk

xi = xi−1 + εi, (3)

where the εi are independent Gaussian random variables
with mean 0 and variance σ2. This definition of the state
model provides a stochastic continuity constraint, which
insures that states that are close in time are close in value. In
our case this guarantees continuity of the burst probabilities.
The parameter σ2 governs how rapidly changes can occur
between adjacent states. To estimate the set of states and
σ2 we use an expectation maximization (EM) algorithm for
point processes and binary time series [13][14].

III. ESTIMATION ALGORITHM

Our objective is to estimate the state process xi and the
parameter σ2

e for i = 1, ..., N . This will allow us to compute
the BSR estimate with its confidence intervals. We treat the
initial condition x0 as a parameter. The states and parameter
estimates are computed by maximizing the expectation of the
complete data log likelihood. The complete data likelihood
is

p(b1:N , x|σ2
e , x0) = ΠN

i=1p
bi
i (1− pi)1−bi( 1

2πσ2
e
)

1
2 ×

exp(− 1
2
(xi−xi−1)

2

σ2
e

)

= p(b1:N |x)p(x|σ2
e , x0). (4)

The EM algorithm iterates between an expectation or E-
step and a maximization or M-step. The expectation step is

A. Expectation Step

At iteration l + 1 we compute in the expectation step the
expected value of the complete data log likelihood given the
complete data b1:N and the estimates σ2(l) and x

(l)
0 of the

parameters from iteration l:

Q(σ2
e , x0|σ2(l), x

(l)
0 ) = E[log[p(b1:N , x|b1:N , σ2(l), x

(l)
0 )

= E(ΣNi=1bixi

− log(1 + exp(xi)|b1:N , σ2(l), x
(l)
0 ))

+ E[ΣNi=1 −
1

2

(xi − xi−1)2

σ2
e

− N + 1

2
log(2π)− N + 1

2
log(σ2

e)

− x20
2σ2

e

|b1:N , σ2(l)
e , x

(l)
0 ]. (5)

We can see upon further expanding the right hand side
that we need to estimate three quantities for i = 1, ..., N

The expectation of the state variable given the data up to
time N ,

xi|N ≡ E[xi|b1:N , σ2(l)
e , x

(l)
0 ], (6)

and the covariances given the data up to time N ,

Wi|N ≡ E[x2i |b1:N , σ2(l)
e , x

(l)
0 ] (7)

and,

Wi,i−1|N ≡ E[xixi−1|b1:N , σ2(l)
e , x

(l)
0 ]. (8)

The expectation step consists of three parts. First we
compute the estimates of xi|i and σ2

i|i from the forward filter.
Second, we use the backward filter to compute xi|N and
σ2
i|N . Finally, we use the state space covariance algorithm to

compute the covariances Wi|N and Wi,i−1|N .
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1) Forward Filter: Given the parameters estimates from
iteration l, this step estimates xi|i and σ2

i|i, meaning that it
will estimate the state and the variance at i looking at data
from the start of the experiment up to i using a non linear
forward filter algorithm [13][14]. The one step prediction
mean and variance are given by

xi|i−1 = xi−1|i−1, (9)

σ2
i|i−1 = σ2

i−1|i−1 + σ2(l)
e . (10)

The posterior mode and variance are given by

xi|i = xi|i−1 + σ2
i|i−1(bi − pi|i), (11)

σ2
i|i = [(σ2

i|i−1)−1 + pi|i(1− pi|i)]−1. (12)

The initial conditions are x0|0 = x
(l)
0 and σ2

0|0 = σ2(l). pi|i
corresponds to the mode of the posterior distribution which
we estimate recursively. This filter is non-linear because xi|i
appears on both sides of (11).

2) Backward Filter: Using the posterior estimates, a
fixed-interval smoothing algorithm (FIS) [13][14] gives us
the estimates xi|N for i = N − 1, ..., 1 , meaning that the
estimate at time i is based on all the data up to time N . Our
final estimate of the state will be thus a Gaussian distributed
variable with mean xi|N and variance σ2

i|N . The FIS is

xi|N = xi|i +Ai(xi+1|N − xi+1|i), (13)

Ai = σ2
i|i(σ

2
i+1|i)

−1, (14)

σ2
i|N = σ2

i|i +A2
i (σ

2
i+1|N − σ

2
i+1|i). (15)

The initial conditions are xN |N and σ2
N |N previously

estimated in the filter algorithm.
3) State Space Covariance Algorithm: Finally, the state

space covariance algorithm [15] gives σi,j|N :

σi,j|N = Aiσi+1,j|N , (16)

where 1 < i < j < N . The covariances are thus given by

Wi,i−1|N = σi,i−1|N + xi|Nxi−1|N (17)

and,
Wk,k|K = σ2

i|N + x2i|N . (18)

The maximization step is

B. Maximization Step

In the maximization step, the complete data log likelihood
is maximized with respect to σ2 and x0. This yields the
estimates

σ2(l+1) = (N + 1)−1(2(ΣNi=2Wi|N − ΣNi=2Wi−1,i|N )

+
3

2
W1|N −WN |N ) (19)

and,

x
(l+1)
0 =

1

2
x1|N . (20)

Dynamic BSR Estimate: The algorithm iterates between
the Expectation and Maximization steps until convergence.
The convergence criteria we use are the same as those
developed by [12]. The fixed-interval smoothing algorithm
evaluated at the maximum likelihood estimates x0 and σ2

2

together with the logistic equation (2) give us the probability
of a suppression at time i for i = 1, ..., N . From there we can
compute the probability density function which corresponds
to the dynamic BSR estimate and is given by:

f(p|xi|N , σ2
i|N ) = [(2πσ2

i|N )0.5p(1− p)]−1 ×

exp(− 1

2σ2
i|N

[log[p(1− p)−1]− xi|N ]2). (21)

IV. RESULTS

Fig. 2 illustrates the results of our algorithm. The data
used were recorded from a rat under stable 2% isoflurane
for sixty minutes. A four-minute window centered at
the time of physostigmine injection is shown in Fig. 2.
We adapted the algorithm of Vijn and colleagues [6] to
extract the burst suppression binary sequence by setting the
minimum burst suppression window and the epoch size to
100 milliseconds. This binary sequence is the input to our
algorithm. The analysis was conducted using the Matlab
software (MathWorks, Natick, MA) available at our website
(http://neurostat.mgh.harvard.edu/BehavioralLearning/Matlabcode).
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Fig. 2. Panel A shows the estimated BSR (red curve) with its 95%
confidence intervals (black curves). The BSR declines appreciably after
administration of physostigmine at time 0. Panel B shows a scatter plot
of the significant differences (see text) between points in time. Red and
black dots indicate that the probability of xi being significantly smaller and
greater than xj respectively is 0.975.

Panel A in Fig. 2 shows the dynamic BSR curve with
its 95% confidence intervals. Prior to the administration of
physostigmine at time 0, the BSR oscillates approximately
between 0.2 and 0.8 with a median value of approximately
0.6. This suggests that the EEG spent the majority of its
time in the suppressed state. After time 0, there is a steep
decrease in the BSR. From this point on the BSR oscillates
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between 0.05 and 0.10. This is consistent with a decrease in
suppression or equivalently, an increase in arousal. Because
we estimated the joint distribution of the state process we
can evaluate Pr(xi > xj) for any 0 ≤ i < j ≤ N which is
equivalent to the probability that the BSR at time i is greater
than the BSR at time j because the transformation between
the state variable xi and the probability of a suppression pi
is monotonic. Panel B in Fig.2 is a scatter plot showing the
pairwise significant differences between the BSR across time.
The red and black dots correspond to Pr(xi < xj) = 0.975
and Pr(xi > xj) = 0.975 respectively, where i is the index
across the x− axis and j is the index across the y − axis.

To illustrate how to read Fig. 2B, notice that the BSR
decreases at time -0.75 min. The red vertical strip at time -
0.75 min show that the BSR at all times from -2 min to -0.75
min are significantly greater than the BSR at -0.75 min to
-0.80 min. In contrast, the black vertical strip at the -0.5 min
shows that all BSR prior to this time are significantly smaller.
This observation is consistent with the BSR estimates in Fig.
2A. The red dots clearly show that Pr(xi < xj) = 0.975
for i ≥ 0 and j < 0, which means that the BSR after the
injection of the physostigmine is significantly smaller than
before the injection. This abrupt drop in the BSR is expected
because physostigmine is a cholinergic agonist that induces
increased arousal.

V. CONCLUSION

We have presented a state space model in which we define
BSR dynamically as the probability of a suppression period
as a function of time. We estimated the model using an ap-
proximate EM algorithm and illustrated its application in the
analysis of rodent burst suppression recordings under general
anesthesia. Our approach removes the need to average the
ratio over long epochs. It also provides a continuous estimate
of the probability of a burst and the joint distribution of the
burst suppression states. The latter allows us to make formal
statistical comparisons between burst activity at any time
points. Our state-space model suggests a more principled
way to analyze this key EEG feature that may offer more
informative assessment of this important brain state.
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