
  

  

Abstract— The early detection of epileptic seizures requires 

computing relevant statistics from multivariate data and 

defining a robust decision strategy as a function of these 

statistics that accurately detects the transition from the normal 

to the peri-ictal (problematic) state. We model the afflicted 

brain as a hidden Markov model (HMM) with two hidden 

clinical states (normal and peri-ictal). The output of the HMM 

is a statistic computed from multivariate neural measurements. 

A Bayesian framework is developed to analyze the a posteriori 

conditional probability of being in peri-ictal state given current 

and past output measurements. We apply this method to multi-

channel intracortical EEGs (iEEGs) from the thalamo-cortical 

ictal pathway in an epilepsy rat model. We first define the 

output statistic as the max singular value of a connectivity 

matrix computed on the EEG channels with spectral techniques 

Then, we estimate the HMM transition probabilities from this 

statistic and track the a posteriori probability of being in peri-

ictal state (the “information state variable”). We show how the 

information state variable changes as a function of time and we 

predict a seizure when this variable becomes greater than 0.5. 

This Bayesian strategy significantly improves over chance level 

and heuristically-chosen threshold-based predictors.  

I. INTRODUCTION 

PILEPTIC seizures in patients can be preceded by early 

changes in the temporal properties of intracortical EEG 

(iEEG) signals [1]–[10]. Univariate and bivariate approaches 

have provided some evidence for such changes. Iasemidis et 

al. [1][2] showed that the short-term largest Lyapunov 

exponents of the iEEG recorded in a critical electrode site 

may significantly decrease ~70 min before the seizure onset. 

Lehnertz and Elger [3][4] reported that a measure of the 

EEG complexity can decrease ~12 min before a seizure, Le 

Van Quyen at al. [5] showed that a measure of the similarity 

between non overlapping windows of the same EEG signal 

may significantly modulate ~5 min before a seizure, and 

Jouny et al. [6] showed that a measure of EEG complexity 

may increase several seconds before the clinical onset of the 

seizure. Finally, [7] reported that the accumulated energy 

(time integrated variance of the power spectrum of the EEG) 

locally increases in specific electrode sites 50 min before the 

seizure because of bursts of epileptiform discharges.  

Bivariate measures [8]–[10], instead, estimate the phase 

synchronization between pairs of EEG channels and define 
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phase variables based either on the Hilbert Transform or the 

Wavelet Transform [11]. Several bivariate measures have 

been proposed (max linear cross-correlation [8], conditional 

probability index [9][12], phase difference [10], Shannon 

entropy index [12], etc.) and it has been shown that such 

measures may decrease ~80 min before the seizure onset [8]. 

Based on the variability of these measures, several seizure 

prediction algorithms were proposed [1][2][9][13]. These 

algorithms track the measures over time and predict a 

seizure when such measures pass a heuristically-chosen 

fixed threshold. However, studies conducted on extensive 

databases of clinical seizures show that these measures with 

fixed threshold policies have poor predictive performances 

and are typically no better than a chance level predictor 

[9][13]–[16]. Possible explanations can be: (i) univariate and 

bivariate measures provide a limited description of the peri-

ictal activity as they do not capture network effects among 

multiple sites; (ii) transitions from normal (seizure-free) to 

peri-ictal state could impact 2nd or higher order statistics, 

which means that such transitions cannot be captured with 

fixed threshold-based policies on these measures; (iii) 

thresholds are heuristic and do not explicitly optimize any 

performance-related objective function (e.g., minimizing the 

prediction delay or the probability of false alarms, etc.). 

We propose a probabilistic framework for the analysis of 

multivariate statistics computed from multichannel iEEGs in 

different clinical states. We characterize the multivariate 

statistic as the output of a hidden Markov model (HMM) 

[17] with hidden normal and peri-ictal states. Then, we 

exploit a Bayesian approach to analyze on line the a 

posteriori probability of being in peri-ictal state given the 

current and past output measurements [18], and use this 

conditional probability for predicting a state transition. Our 

framework computes a power spectrum-based connectivity 

matrix among all the available iEEG channels and uses the 

max singular value (σmax) of this matrix as the required time-

varying multivariate statistic. The distribution of the values 

of σmax conditioned on being in normal vs. peri-ictal state is 

estimated from the data via the Baum-Welch algorithm [19]. 

We apply our framework to multichannel iEEG signals 

simultaneously acquired in anterior and posterior thalamus, 

hippocampus, and cortex in a rodent model of generalized 

epilepsy [20]. Two male Sprague–Dawley rats were treated 

with pentylenetetrazol (PTZ) chemoconvulsant to generate 

short-term (i.e., approximately 10 min after the injection) 

seizures with selective activation of the anterior thalamus. 
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Our data set included 12 clinical seizures from 7 recording 

sessions (session duration: 33.0 ± 5.3 min, mean ± standard 

error of mean [s.e.m.]). Because of the PTZ, the transition 

from preictal normal state to peri-ictal state in the iEEGs 

occurred just ~5 min before the actual onset of every clinical 

seizure and a few minutes after the injection of PTZ.  

With this data, our framework detected the state transition 

with average lag of 86.3 ± 19.5 s (mean ± s.e.m.), which is 

significantly lower (p-value p < 0.05) than the lag achieved 

by a chance level and a threshold-based policy, where the 

threshold is chosen heuristically and applies to σmax. 

II. METHODS 

A. Multivariate Analysis 

Multichannel iEEGs sampled at 200 Hz are used. For each 

pair of channels in each recording session, the cross power 

spectrogram is computed over consecutive 3 s windows (0.5 

s overlap, Fig. 1a). For each window, the power density is 

computed with the Welch’s method [21] (Fig. 1b). 

The connectivity matrix is defined as a time-varying 

matrix A(k), whose (i,j)-th element at stage k is the power 

stored in the band [80,100] Hz of the cross power spectrum 

between the i-th and j-th channel in the k-th window (Fig. 

1c-d). The max singular value of A(k), σmax(k), is computed 

at each stage k and tracked over time. 

B. Hidden Markov Model 

We model the afflicted brain as a HMM with two states 

(Fig. 2). At stage k, the state }1,0{∈kx  (0 = normal; 1= peri-

ictal). We assume that x0= 0 and that xk switches from 0 to 1 

at some stage 0>T , with T geometric random variable, and 

that fromT onwards xk = 1. The probability of the event 

}{ kT = is 1
)1()(
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k
kTP ρρ for k = 1,2,3,…, where ρ is 

the parameter of the geometric distribution and represents 

the probability of transition from state 0 to state 1 [17]. 

Differently from a traditional Markov chain, the states of 

an HMM are inaccessible or “hidden”. However, output 

observations, zk, are available and depend probabilistically 

on the states. One can think of zk as a “noisy” observation of 

xk. We assume that, for any k, zk = σmax(k). For each recorded 

session of multichannel iEEGs, we estimated off-line the 

probability mass function qx(z) = P(zk=z | xk=x) for { }1,0∈x

and any value z > 0 by running the Baum-Welch algorithm 

[19] on training data (~50% of the available observations). 

C. Bayesian Evolution Model and Estimation Policy 

Because the state xk is inaccessible, we define the new 

“information state variable” πk = P( T ≤ k | z0,…, zk) =P(xk = 

1 | z0,…, zk) which is the Bayesian a posteriori probability of 

being in state 1 at stage k given the observations up to and 

including stage k. The evolution of πk is given by [18][22]: 
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where we used )()()( 10111 +++ = kkk zqzqzL [18][22] and ρ is 

the parameter of the geometric distribution in section II-B. 

By using the Bayesian framework, an estimation TS of the 

time of state transition is given by: 

{ }5.0|0min >>=
kS

kT π      (2) 

i.e., we decide that a change has occurred when the a 

posteriori probability of a change exceeds 50% [18]. 

D. Evaluation of the Detection Policy 

Since each recorded session in our data set includes at least 

one seizure (see Section II-E), we evaluated the detection 

performances of the policy (2) by measuring the absolute 

distance || TTS −  between the estimated and actual change 

time for each seizure event. For each event, we marked the 

peri-ictal interval by running the Viterbi’s algorithm [19] on 

the sequence of observations zk, k = 1,2,3,…, (Fig. 3a-b) 

with the hidden states and the probability mass functions 

qx(z), { }1,0∈x as defined in section II-B (Fig. 3c). The actual 

change time T was set at the beginning of such marked 

interval and maximizes the distance between the probability 

distributions of the zk inside vs. outside the interval [19].  
We compared the policy (2) with the chance level (CL) 

predictor ρ1][ == TET CL
S , where ρ is defined in section II-

B and E [·] is the expected value. 

We also compared (2) with the heuristic threshold-based 

(HT) policy: 

 

Fig.2. HMM schematic with zk = σmax(k). 
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Fig. 1.  Multivariate analysis. Consecutive 3 s-long iEEG windows with 

0.5 s overlap (a) are used for computing the time-varying cross power 

spectrogram (b) between any pair of channels. For each window, the 

cross power in the band [80, 100] Hz is computed (d) and used for filling 

the elements of the connectivity matrix (c) at the correspondent stage. 
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Fig. 4.  Simplified schematic of the connections from mammillary 

bodies (MB) to the anterior thalamus (AN) via the mammillothalamic 

tract. AN, MB, and hippocampus belong to the “circuit of Papez”. AN 

has primary rostral connections to cingulate gyrus and, ultimately, to 

cortex. The posterior thalamus is assumed to be unaffiliated with 

activity during the epileptic seizure and used as a reference site. 
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H
*
 was the same for every recording session and was set as 

follows: we first computed, for each seizure, the receiver 

operator characteristic (ROC) curve [2] of the observations 

σmax(k), i.e., we linearly varied the threshold H to span the 

set of values of σmax(k), and, for each H, we computed the 

true and false positive rates as the fraction of samples in the 

peri-ictal and preictal normal interval that are larger than H, 

respectively [2]. Then, for each H, we averaged the true and 

positive rates over the available seizures and constructed the 

mean ROC curve (Fig. 3d). Note that each point of the mean 

ROC curve corresponds to a specific value of H. Finally, we 

chose H
*
 as the threshold at which the max distance between 

true and false positive rates of the mean ROC curve is 

achieved. This choice of H
*
 aimed at keeping both the 

probability of the event }{ TTS < and the average delay low. 

E. Experimental Set Up  

Details about the experimental set up are in [20].The Johns 

Hopkins Medical Institutional Review Board Committee for 

laboratory investigation approved the research protocol. 

 Male Sprague-Dawley rats (250-300 g) were implanted 

with four skull screw EEG electrodes placed bifrontally and 

posteriorly behind bregma. Bipolar insulated steel electrodes 

(0.125-mm diameter, 2-mm tip separation) were placed on 

cortex (CTX), in anterior (2 electrodes, one per side) and 

posterior thalamus. A fifth depth electrode was placed in 

hippocampus (Fig 4). Animals were allowed to recover for 2 

days with ad lib food and water.  Then, they were implanted 

with a jugular venous catheter and recovered for a minimum 

of 1 h. In each animal, baseline EEG was recorded for at 

least 60 s prior to the infusion of PTZ (100 mg ml
-1

, Sigma 

Chemical, St. Louis, MO), administered at 5.5 mg  kg
-1

min
-1

. 

Behavior and EEGs were both continuously monitored and 

the extent of seizure was noted according to the modified 

clinical Racine scale [20]. Animals passed through all stages 

of the Racine scale. iEEGs from the implanted electrodes 

were acquired in 7 nonconsecutive sessions (min and max 

session duration: 12 and 58 min, respectively; average: 33.0 

± 5.3 min, mean ± s.e.m.) and 12 seizure events were noted.  
Analog EEGs were amplified with a Grass 8D-10 eight-

channel portable polygraph with internal 0.3 Hz high-pass 

and 70 Hz low-pass filter cutoffs. A 60 Hz notch was also 

employed. Analog EEGs were collected using a 7-channel 

FM data recorder (TEAC MR-30) and digitized by CODAS 

(DATAQ Instruments Inc., Akron, OH) with sampling rate 

of 1000 Hz. Then, data was downsampled offline at 200 Hz.  

III. RESULTS  

Parameter ρ in (1) was estimated by fitting (maximum 

likelihood estimation) a geometric distribution on the actual 

change times T . Results are in Fig. 3, 5-6. 

The two-state HMM fitted on the sequential observations 

σmax(k) clearly isolates the problematic state (yellow portion 

in Fig. 3b) well before the onset of the clinical seizure, while 

the raw iEEGs do not show significant modulation before 

the seizure onset (Fig.3a). The connectivity matrix combines 

information from all the available channels, captures the 

network interactions among the electrode sites, and therefore 

modulates during the entire transition from normal preictal 

to peri-ictal state (Fig. 3b). Such modulation is reflected in 

the probability function qx of σmax, which is fitted on actual 

observations and is different in state x=0 vs. x=1 (Fig. 3c). 

The different probability distribution of σmax in state 0 vs. 

1 also influences the evolution of the variable πk in (1). As in 

Fig. 5, πk is generally low in state 0 and begins to increase at 

the transition to state 1. The dynamics of πk depends on the 

ratio L(·) between the functions q1 and q0 in (1), and is 

generally fast (a few seconds are required to reach the steady 

state value πk = 1) provided that the probability distribution 

of σmax is significantly different in state 0 vs. 1.  
Based on the dynamics of πk, we proposed a Bayesian 

estimator (BE) in (2) to predict the transition from interictal 

to peri-ictal state. Cumulative results in Fig. 6 indicate that 

the BE performed better than the CL and HT predictors. The 

average absolute distance || TTS − (Fig. 6a), delay (Fig. 6b) 

and anticipation (Fig. 6c) with BE were lower than with CL 

 
Fig. 3. Change times. a-b) The peri-ictal interval (yellow) of the 

seizure (a) is extracted by running the Viterbi’s algorithm on the 

observations zk = σmax(k), k=1,2,3,…. in (b). c) Probability functions 

q0, q1 of zk in state 0 (preictal normal) and 1 (peri-ictal), respectively, 

for the same seizure. Histograms of the actual σmax are overlapped. d) 

Mean ROC curve. The asterisk denotes the point of the curve that 

corresponds to the max distance between true and false positive rates. 
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Fig. 5. Evolution of the information state variable πk for a seizure 

event. Actual change time and estimation given by BE, CL, and HT 

predictor are marked. 
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and HT, and the difference was statistically significant (t-

test, p<0.05) for absolute distances (BE vs. CL and BE vs. 

HT) and delays (BE vs. CL only). The difference between 

delays with BE and HT, instead, was not significant because 

TT HT
S >  only in 2 out of 12 seizures, which is due to the 

large variance of σmax in state 0 (Fig. 3c). Although the t-test 

was not passed in case of }{ TTS < , the average anticipation 

was remarkably less with BE than with CL (66s) or HT (96s) 

(Fig. 6c). Also, the absolute distance || TTS − with BE was 

lower than with CL and HT in 11 out of 12 and 10 out of 12 

seizures, respectively, which means that the improvements 

achieved with the BE policy over the CL and HT predictor 

were independent from the specific seizure event. 
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Fig. 6. Detection policies. a) Average absolute distance between the actual 

change time �� and the estimation TS achieved with the Bayesian estimator 

(2) (BE), the chance level predictor (CL), and the heuristic threshold-

based policy (3) (HT). b), c) show results separately for delays (i.e., 

events {TS > ��} only) and anticipations (i.e., events {TS < ��} only), 

respectively. Bars are mean + s.e.m. Asterisks and circles indicate 

significant difference (p < 0.05) BE vs. CL and BE vs. HT, respectively. 
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