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An Algorithm For Detecting Seizure Termination in Scalp EEG
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Abstract— Little effort has been devoted to developing al-
gorithms that can detect the cessation of seizure activity in
scalp EEG. Such algorithms could facilitate clinical applications
such as the estimation of seizure duration or the delivery of
therapies designed to mitigate postictal period symptoms. In
this paper, we present a method for detecting the termination
of seizure activity. When tested on 133 seizures from a public
database, our method detected the end of 132 seizures with a
mean absolute error of 10.3 £ 5.5 seconds of the time marked
by an electroencephalographer. Furthermore, by pairing our
seizure end detector with a previously published seizure onset
detector, we could automatically estimate the duration of 85%
of test seizures within a 15 second error margin.

I. INTRODUCTION

Much effort has been devoted to developing computerized
algorithms for detecting the presence of seizure activity
in recordings of the scalp electroencephalogram (EEG).
Published algorithms include patient-specific [1] and non-
specific [2] algorithms capable of detecting seizures in either
an online or offline fashion.

While some effort has been devoted to developing methods
for detecting the end of the non-epileptic seizures that ac-
company electroconvulsive therapy [3], little effort has been
devoted to investigating how to reliably detect the cessation
of epileptic seizures. Such algorithms could facilitate novel
clinical applications. For instance, detecting the end of a
seizure could prompt the delivery of a therapy that decreases
the side effects of the postictal period [4].

Implicit within the literature on seizure detection is the
assumption that the same decision rule used to detect a
seizure’s onset can be used to detect its end. However,
this approach yields poor results because a seizure’s onset
and end can be very different. Seizures with focal activity
following their onset may exhibit generalized activity fol-
lowing their end, and generalized seizures may exhibit focal
activity following their end [5]. Furthermore, the rhythmic
activity accompanying the onset of a seizure typically has a
fundamental frequency within the alpha, beta, theta, or delta
bands [2], while EEG following a seizure, which is known as
postictal EEG, often exhibits delta wave slowing, amplitude
attenuation, or a combination of these phenomena [5].

Similar to seizure onset, postictal EEG also varies across
patients. For example, the postictal EEG of patient A, shown
in the left panel of Figure 1, exhibits generalized amplitude
attenuation following seizure termination at 3380 seconds.
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In contrast, the postictal EEG of patient B, shown in the
right panel Figure 1, exhibits high-amplitude, slow activity
following seizure termination at 2925 seconds.

3378 3380 3382

Time(Sec) Time(Sec)

Fig. 1: Postictal EEG of patient A (left) and B (right).

In this paper we present a method for detecting the end of
seizure activity. Our method, which can be patient-specific
or non-specific, involves initiating a search for the end of a
seizure once its beginning has been identified. By separating
the tasks of seizure onset and end detection, we transform
seizure end detection to a binary classification problem that
involves separating ictal and postictal EEG.

II. DETECTING SEIZURE TERMINATION

The seizure end detector performs a sliding window anal-
ysis of the EEG once seizure onset has been detected. The
analysis window is 5 seconds long, and is advanced by 1-
second increments. The detector extracts features from each
analysis window, and then assembles a feature vector X.
Next, the detector uses a classifier to determine whether
X is representative of the ictal or postictal state. If L =5
successive vectors are classified as postictal, then the detector
declares that the seizure has ended.

A. Feature Vector Design

We capture the spatial and spectral properties of each EEG
epoch in a M =25 dimensional vector X. Each element in X
corresponds to the average, across N channels, signal energy
within one of M contiguous frequency bands. The bands are
1 Hz wide and span the frequency range 0-M Hz (e.g. 0-1,1-
2,...,24-25 Hz). We assemble X as described next.

First, we compute x;;, the energy within band i =
1,2,...,M on channel j =1,2,....N. We do so by com-
puting the periodogram of channel j, and then summing
the values of that function over the indices corresponding
to the frequency band i. We estimate the periodogram of
an epoch from channel j by applying the Welch algorithm
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with 1 second window, 50% overlap, and Nppr = 4096.
Next, we compute the elements of X. Each element X;
corresponds to a weighted average of x;; across N channels.
Thus, X; = (3 wjxij) (X0 w)) ™! fori=1,2,...,M.

In the patient non-specific setting, no information about
the test patient is available to guide the weighting of x;;,
sow;j=1for j=1,2,...,N. In the patient-specific setting,
channels are weighted based on how differently they appear
in the ictal and postictal states. If X;; icrqr and X;; posricral are
the mean x;; extracted from a patient’s training ictal and
postictal epochs, then w; = Zﬁ‘il i ictal — Xij.postictal |-

B. Feature Vector Classification

To classify X as ictal or postictal, we use a support-
vector machine (SVM). Specifically, the implementation in
the Statistical Pattern Recognition Toolbox (STPRTool) [6].
A SVM assigns X to one of these classes based on which
side of a decision boundary it falls. The decision boundary,
which is determined using training data, can be chosen to
be linear or nonlinear. Which boundary type to choose is
influenced by the amount of training data available, and its
distribution within the feature space.

Ictal and Postictal Feature Vectors From One Patient
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Fig. 2: Separation of ictal and postictal feature vectors from
a patient using linear and nonlinear decision boundaries.

In the patient-specific setting, training data is limited.
Consequently, nonlinear boundaries that tightly fit the dis-
tribution of training samples may result in poor performance
on seizures not well-represented by those samples. As an
example, Figure 2 shows the linear and nonlinear boundaries
learned using two-dimensional projections of training ictal
(red) and postictal (blue) vectors from a patient. The figure
also shows how both boundaries perform when used to
classify test ictal vectors (green) extracted from the same
patient during an unusual seizure. The nonlinear boundary
encloses a few test vectors. In contrast, the linear boundary
correctly classifies all but one of the test vectors as ictal. In
this work, we use a L, soft-margin SVM (svm2 in STPRTool)
with a linear kernel and regularization constants C =5 for
ictal and C =1 for postictal when operating the detector in
the patient-specific mode.

In the patient non-specific setting, training datasets exhibit
greater diversity and cannot be well-separated by a linear
boundary. As an example, Figure 3 shows training ictal

(circles) and postictal (crosses) vectors from two patients,
and a nonlinear boundary that can separate those vectors
better than any other linear boundary. In this work, we use a
L, soft-margin SVM with radial basis function kernel, kernel
parameter 0.25, and default regularization constants when
operating the detector in the patient non-specific mode.

Ictal and Postictal Feature Vectors From Two Patients
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Fig. 3: Separation of ictal and postictal feature vectors from

two patients using a nonlinear decision boundary.

III. TESTING METHODOLOGY
A. Dataset

We evaluated our detector on the CHB-MIT database’,
which contains 133 seizures from 22 pediatric patients;
7 patients had partial-onset seizures, 7 had secondarily-
generalized seizures, and 8 had generalized seizures. Each
seizure’s onset and end was determined by an expert. Figure
4 shows each patient’s minimum, maximum, and mean
seizure length. The numeral located over each bar indicates
the number of seizures available for each patient.

Patient 11 maximum
2751 seizure length= 723 seconds

123 456 7 8 9 10111213 141516 17 18 19 20 21 22
Patient Number

Fig. 4: Number of seizures and minimum, maximum, and
mean seizure length for each database patient. EEG sampled
at 256 Hz.

B. Evaluation Metrics

We use multiple metrics to assess the performance of the
seizure end detector. The first metric, end detection error,
measures the time difference between algorithm declaration

"http://physionet.org/physiobank/database/chbmit /
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of seizure end and expert-marked seizure termination. When
we wish to ignore the sign of the error, we report the absolute
value of the end detection error. The next metric, sensitivity,
measures the percentage of test seizures whose end the
algorithm detected. The third metric, classification accuracy,
refers to the percentage of ictal and postictal feature vectors
that the end detector correctly classifies. Finally, seizure
length estimation error, reflects how well the combination
of a patient-specific seizure onset and end detector measure
seizure duration.

C. Evaluation Scheme

We use a leave-one-record-out procedure to evaluate the
performance of our seizure end detector. Since we assume a
separate module will detect seizure onset, test records extend
from the electrographic onset of a seizure to 90 seconds
following its end. Records contain, on average, 64 £ 51
ictal vectors and 90 postictal vectors. Let N; be the number
of records that belong to patient i.

In the patient-specific context, the end detector is trained
on vectors derived from the ictal and postictal periods in
N; — 1 records. Next, the detector is tasked with detecting
seizure termination in the withheld record. These two steps
are repeated N; times so that each record from patient i is
tested once.

In the patient non-specific context, the end detector is
trained on feature vectors extracted from the records of all
database patients other than patient i. The detector is then
tasked with detecting seizure terminations in all N; records
belonging to patient i.

IV. RESULTS

A. End detection error, Sensitivity, Classification accuracy

The patient-specific detector recognized 132/133 seizure
ends with a classification accuracy of 90% and an average,
absolute end detection error of 10.3 5.5 seconds. The
patient non-specific detector recognized all seizure ends with
a classification accuracy of 84% and an average, absolute
error of 8.9+2.3 second.
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Fig. 5: Patient-specific and non-specific mean, absolute end
detection error.

Figure 5 shows the mean, absolute end detection error
for each detection scheme/patient pair. For 16 of 22 patients

(e.g. patients 1, 2, 3, 5) the patient-specific and non-specific
detectors exhibited absolute errors that differed by less than
5 seconds.

Seizure End Detection Error Histograms
50 T T T

T
Il Patient-Specific
45} [ Patient Non-Specific

[T N
& S
T T

@
S
T

Number of Seizures
N N
o o
T

o
T

10

-%0 -40 -20 0 20 40 60 80

End Detection Error (Seconds)
Fig. 6: Histogram of patient-specific and non-specific end
detection errors.

Figure 6 shows histograms of the signed end detection
error for the patient-specific and non-specific detectors. For
both detectors, the majority of seizure ends were detected
following the end marked by the expert, which results in a
positive error. Each detector noted the end of 81% of the test
seizures within 15 seconds of the end marked by the expert.

B. Seizure Length Estimation

Figure 7 shows the average, signed seizure length esti-
mation error obtained using the combination of a published
patient-specific seizure onset detector [7], and the end de-
tector described in this paper. The combined onset and end
detector was able to accurately estimate the length of both
short seizures (patients 6, 13) and long seizures (patients 5,
7). The patients for whom the mean seizure length estimation
error was close to or greater than 10 seconds (patients
3, 12, and 18) did not have unusually long seizures or a
small number of training seizures. Instead, the EEG of these
patients exhibited ictal or postictal activity that caused the
end detector to declare seizure termination too early or too
late as illustrated in the following section.
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Fig. 7: Seizure length estimation error for a combined
patient-specific onset and end detector.
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C. Case Studies

The patient-specific seizure end detector exhibited ro-
bust performance on the data belonging to patient 11. The
database contains three seizures for patient 11 of length 18,
28, and 723 seconds. As shown in the left panel of Figure
8, short seizures exhibited low-amplitude, 4-5 Hz activity
that was localized to the channels FP;-F; through P7-O;.
A portion of the long seizure is shown in the right panel
of Figure 8. This seizure exhibited high amplitude, 2-3 Hz
activity on the channels involved in the shorter seizures,
and the channels P4-O;, Tg-Pg. Although the long seizure
is different, the detector was able to correctly identify its
endpoint with a 11 second end detection error when trained
only on the two shorter seizures.
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Fig. 8: The patient-specific seizure end detector continues
to recognize a patient’s ictal activity even after significant
change in its spectral and spatial chracter.

Seizures that gradually transitioned from the ictal to the
postictal state caused the detector to exhibit large seizure end
detection errors. As an example, Figure 9 shows a seizure
belonging to patient 1. Although an expert determined that
this seizure ends at 1491 seconds, the rhythmic activity
on many EEG channels (e.g. FPi-F;, F3-C3) changes only
slightly. This caused the algorithm to postpone declaring
seizure termination until 1510 seconds.
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Fig. 9: Similarity in the spectral character of ictal and pos-
tictal activity causes the patient-specific seizure end detector
to delay declaring seizure termination.

In contrast, the detector declared seizure termination pre-
maturely whenever significant artifacts overlapped seizure
activity. As an example, Figure 10 shows a stretch of artifact-
corrupted, ictal EEG belonging to patient 3. The rhythmic
ictal activity appears most prominently on the channel F;-T
between 1746-1750 seconds. In this case, averaging across
channels obscured the ictal activity, and caused the detector
to incorrectly conclude that the seizure ends 40 seconds
before the actual endpoint.
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Fig. 10: Recording artifacts cause the seizure end detector to
declare seizure termination prematurely.

V. CONCLUSIONS

We presented a machine learning based method for de-
tecting the end of seizures. Our method exhibits excellent
performance in both the patient-specific and non-specific
settings thanks to careful feature vector and classifier de-
sign. Furthermore, our detector can be easily paired with
previously published seizure onset detectors to facilitate
applications such as epileptic seizure duration estimation.
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