
  

  

Abstract— A framework for online dynamic channel 

weighting is developed for the task of EEG-based neonatal 

seizure detection. The channel weights are computed on-the-fly 

by combining the up-to-now patient-specific history and the 

clinically-derived prior channel importance. These estimated 

time-varying weights are introduced within a Bayesian 

probabilistic framework to provide a channel-specific and thus 

patient-adaptive seizure classification scheme. Validation 

results on one of the largest clinical datasets of neonatal seizures 

confirm the utility of the proposed channel weighting for the 

SVM-based detector recently developed by this research group. 

Exploiting the channel weighting, the precision-recall area can 

be drastically increased (up to 25%) for the most difficult 

patients, with the average increase from 81.0% to 84.42%. It is 

also shown that the increase in performance with channel 

weighting is proportional to the time the patient is observed. 

I. INTRODUCTION 

 system that could automatically detect and annotate 

seizures on the neonatal EEG would be extremely 

useful to clinicians in the neonatal intensive care unit 

(NICU). Although a number of methods and algorithms have 

been proposed previously in an attempt to automatically 

detect neonatal seizures [1–3], to date their transition to 

clinical use has been limited due to poor performance.  

Clearly, the performance of the seizure detection systems 

depends on the information included in the corresponding 

EEG channels. By using as many channels as possible, one 

minimizes the probability that useful information is missed. 

On the other hand, it becomes more difficult to automatically 

find what information is useful in the available channels. 

Channel selection has been widely used in Brain Computer 

Interfaces [4–10] mainly for the purpose of computational 

load reduction. Constant (in time) importance of information 

captured by a channel can be assumed for these tasks, 

especially when classification systems targeted are patient-

specific, that is, some representation of testing patient data is 

available beforehand [4], [7–10].  

Patient-specific neonatal seizure detection has limited (if 

any) clinical utility. In fact, samples of testing patient data 

are never available beforehand in a real-life situation in the 
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NICU. Although neonatal seizure may generalize, many 

remain focal or multi-focal, that is, (highly) localized in 

different parts of the brain depending on the patient. Clearly, 

patient-specific dependencies between a seizure event and its 

common location can be learnt in a supervised way over the 

training data available, however these provide little benefit 

for an unseen testing patient – a new patient may have a 

different seizure location distribution. Therefore, a channel 

weighting procedure which can adapt on-the-fly to the testing 

patient would be very useful. Such channel weighting can be 

seen as a generalization of channel selection, where the 

weights can take other than binary forms.  

This work aims at improving the neonatal seizure detector, 

previously developed by this group, by using all available 

channels and dynamically weighting them to emphasize the 

relevant information. In particular, this work first formulates 

the neonatal seizure detection problem in probabilistic terms 

using a Bayesian framework to help indicate where such 

weighting terms should be used. A methodology for the 

estimation of the time-varying channel weights based on the 

synchronized energy of the classifier probabilistic outputs is 

proposed. By emphasizing the patient-specific time-varying 

seizure locations, the detectors manage to self-adapt to every 

testing patient on-the-fly in an unsupervised manner. The 

increase in performance confirms the usefulness and 

consistency of the proposed method when applied to 

different channel subsets.  

II. NEONATAL SEIZURE DETECTOR 

A. Dataset 

The dataset is composed of EEG recordings from 17 

newborns (267.9h, 705 seizures) obtained from Cork 

University Maternity Hospital, Ireland. Signals from 9 

electrodes (T4, T3, O1, O2, F4, F3, C4, C3, and Cz) were 

recorded using the 10-20 system of electrode placement and 

the 8 EEG channels in the bipolar montage (F4-C4, C4-O2, 

F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3, and C3-T3) were used 

to annotate the data. The dataset contains a wide variety of 

seizure types including both electrographic-only and electro-

clinical seizures of focal, multi-focal and generalized types. 

The continuous EEG recordings were not edited to remove 

the large variety of artifacts and poorly conditioned signals 

that are commonly encountered in the real-world NICU. All 

seizures were annotated independently by two experienced 

neonatal electro-encephalographers using video EEG.  
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B. Automated seizure detection system architecture 

The diagram of the previously developed system [11] is 

shown in Fig. 1. The EEG from the 8 above-mentioned 

channels was down-sampled from 256Hz to 32Hz with an 

anti-aliasing filter set at 12.8Hz. The EEG was then split into 

8s epochs with 50% overlap between epochs. Fifty-five 

features were extracted from each channel which represent 

both time and frequency domain characteristics as well as 

information theory based parameters. Details on the features 

can be found in [11, 12]. The features were fed to a SVM 

classifier and the outputs of the SVM were converted to 

probability-like values and smoothed with a moving average 

filter. The averaged value was then compared to a threshold 

from the interval [0 1]. After comparison, binary decisions 

were taken per channel: 1 for seizure and 0 for non-seizure. 

The binary decisions were then fused using logical ‘OR’. It 

has been shown in [12] that the developed system 

significantly outperformed the existing alternatives. The 

same set of SVM models as in [11] was used in this work.  

C. Performance Assessment and Metrics 

The LOO cross-validation method was used to assess the 

performance of the system for patient-independent seizure 

detection [1]. This way, all but one patients’ data were used 

for training/development and the remaining patient’s data 

were used for testing. This procedure was repeated until each 

patient had been a test subject and the mean result was 

reported. The metric used in the work is the area under the 

Precision-Recall curve. Unlike ROC curves, PR curves do 

not present an overly optimistic view of an algorithm’s 

performance if there is a large skew in the class distribution 

[13] – which is the case for neonatal seizure detection. While 

recall is the same as sensitivity (accuracy of a seizure class), 

precision (also known in seizure detection literature as 

selectivity, relative specificity, and positive predictive value) 

is defined as a percentage of correctly produced/predicted 

seizure epochs. Unlike the ROC area, the PR area is not 

equal to 0.5 for random discrimination but depends on class 

priors, that is, the number of datapoints in each class.  

III. BAYESIAN FORMULATION OF SEIZURE DETECTION 

The obtained SVM model can be applied to any EEG 

channel, thus the developed system (Fig. 1) is channel-

independent. Denoting prior/posterior probabilities by P and 

conditional probabilities/likelihoods by p, using Bayes’ 

theorem, the posterior probability of having a seizure 

decision S given a feature vector x can be written as:  

( )
( ) ( )

( )X

x
x

P

SpSP
SP

|
| =  (1) 

Equation (1) is already modeled by the existing detection 

system. If the channel information, c, is taken into account:  
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where P(S,c) is the joint prior probability of having a seizure 

S and it manifesting itself on channel c. P(S,c) can be 

decomposed into having a channel-independent prior 

probability that the seizure occurs across any of the observed 

channels, P(S), and the probability that the seizure manifests 

on channel c given that the seizure occurs, P(c|S). Similarly, 

since the systems described in Section 2 use the designed 

models which are channel-independent, the likelihood 

generated by the model is also channel independent, and thus  

p(x|S,c) can be decomposed into channel-independent 

likelihood, p(x|S), and a data-dependent prior or weighting of 

channel c, P(c|x). Equation (2) can thus be expanded as:  
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The two new terms introduced are channel-specific. 

Additionally, the first prior probability term does not depend 

on the observation x, that is, it does not change with time. 

Both terms can be combined to form a final weight for each 

channel as will be shown in the next section. 

IV. ONLINE CHANNEL WEIGHTING 

In our case with n=9 electrodes, there are n*(n-1)/2 = 36 

possible channels in the bipolar montage. We first model the 

importance of a given electrode, e, and then obtain the 

combined weight for channel, c, in bipolar montage.  

A. Modelling P(e|x)  

The data-driven estimate (at time t) of the ‘importance’ of 

the i
th

 electrode P(ei|x) can be estimated using the 

probabilistic output of the classifier on a feature vector x 

after the moving average filter (Fig. 1). For every electrode 

ei, several channels which cover the brain zone around the 

electrode of interest and share this electrode are selected.  

Let yi(r) be a vector of probabilistic output at time r of 

selected channels. The Pt(ei|x) for electrode i at time t is then 

expressed as: 
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where |yi(r)| denotes the number of channels associated with 

the i
th

 electrode, and Q is a |yi(r)|× |yi(r)| square matrix 
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Fig. 1.  Neonatal seizure detector system diagram. 
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Essentially, the average of the product-moments or cross-

correlation at 0
th

 lag between selected channels, which share 

the same electrode, is calculated here to obtain a measure of 

agreement between probabilistic activities in a certain 

electrode at a point in time, r. The cumulative sum in the 

numerator of (4) represents the integrated synchrony up to 

the current point in time, t. To assure a partition of unity of 

P(e|x) over all possible x, the cumulative sum for a particular 

electrode, ei, is normalized across all the electrodes. 

The integrated synchrony will be high when there is a 

synchronous rise in probability of seizure in all considered 

channels that share the chosen electrode. In turn, a 

synchronized high probability activity is indicative of a 

seizure. Effectively, this measure emphasizes the 

electrode/location in the brain which had a history of 

suspected seizures. Alternatively speaking the measure 

incorporates the fact that any new seizures are more likely to 

happen at the location where seizure activity has been 

observed before. An example of the proposed measure is 

shown in Fig. 2 for patient 8. For this patient, most seizures 

are localized in the C4 electrode, which is reflected in the 

increased integrated synchrony for this electrode. The 

normalized measure of importance, shown in the middle, 

indicates that channels which contain electrode C4 will be 

approximately 2 times more emphasized than the other 

channels during seizure. It can be seen that the emphasis of 

the electrode C4 increases during ictal activity and slowly 

decreases during interictal periods of time.  

B. Modelling P(e|S) 

The measure P(e|S) is defined as the probability that, 

given a seizure is occurring, that it is visible in electrode e. It 

aims at emphasizing a priori, electrodes in which seizures are 

mostly expected. Unlike the channel-independent prior P(S), 

which can be modeled based on the training data annotation, 

the electrode-dependent prior P(e|S) requires per channel 

annotations which are not available. Thus, P(e|S) is estimated 

here from the statistics found in the clinical literature. In 

particular, in [14], it has been shown that as many as 78% of 

seizures were visible in the C3, C4 zone. In [15], it has been 

reported that the theoretical visibility of a seizure in the 

central zone is as high as 94%. In another study [16], it has 

been shown that 46% of seizures are visible in the Fp1, Fp2 

zone, which is close to F3, F4 in our montage. No data were 

found regarding the visibility of seizures in the temporal or 

occipital zones, and there are no premises to believe that a 

seizure is more visible in the occipital and temporal zones 

than in the frontal zone. Based on the data collected from the 

literature, the P(e|S) is represented here as 0.46, 0.46, 0.46, 

0.46, 0.46, 0.46, 0.78, 0.78, and 0.94 for electrodes T4, T3, 

O1, O2, F4, F3, C4, C3, and Cz, respectively.  

C. Combined Channel Weight 

To control the severity of channel weighting, the softmax 

function is applied here: 
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where t is the current time, N is the number of electrodes, k is 

a multiplication constant which controls the severity of 

weighting. If k is large, a single non-zero weight is obtained 

for the most important electrode and the scheme converges 

to channel selection, where only those channels which 

contain this electrode are selected.  

The two terms P(e|S) and P(е|x) have been modeled so far 

for every electrode. Looking at the two electrodes associated 

with channel c, a final measure per channel in the bipolar 

montage, at time, t, is calculated as the maximum of 

measures for the two constituent electrodes:  
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i
∈
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After the weight is calculated in (7), it is used to estimate 

the final probability in (3). This way, the current probability 

of a seizure in a channel (evidence) is multiplied by a 

channel weight (confidence) which is obtained on-the-fly by 

combining the up-to-now patient-specific history and the 

clinically-derived prior channel importance.  

V. RESULTS AND DISCUSSION 

A. The effect of channel weighting 

To show the effect of the channel weighting for various 

channel subsets, backward channel elimination is performed 

in a similar manner to that usually used for feature selection. 

This procedure effectively provides nested subsets of 

channels. The performance with and without channel 

weighting is shown in Fig. 3. The resultant sequence of 

channels was obtained over the development data and then 

tested on the testing data. Initially, all 36 channels were 

included and one channel was eliminated at a time. The 
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Fig. 2.  An example of the proposed measure of electrode importance 

calculated for patient 1. The top graph shows the integrated synchrony for 

each electrode. The middle graph plots the resultant P(e|x). The bottom 

graph plots the ground truth where 1 indicates ‘seizure’. 
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channel was chosen to be eliminated if the difference of 

performance of a current set of channels with and without it 

led to the highest improvement or the smallest decrease over 

the development data. This eventually terminates with the 8 

channels which were originally used for data annotation. 

Having these 8 original channels (which were not considered 

for elimination in the channel selection routine) as a final 

point, it was assured that all annotated seizures were 

potentially detectable. It can be seen that the system with 

channel weighting consistently outperforms the same system 

without channel weighting for all subsets of the chosen 

channels. The average improvement in terms of PR areas is 

18% relative, growing from 81.0% to 84.42%.  

B. Patient-specific improvement over time 

Fig. 4 shows the absolute average difference of the PR 

areas for 17 patients in the dataset. It can be seen from Fig. 4 

that the average increase in the PR area (3.4%) is attributable 

to significant (up to 25% absolute) performance increases in 

certain patients. For most patients the channel weighting has 

almost no effect whereas increases in PR area for patients 1, 

2, 5, 7 and 8 are particularly large. In the real clinical 

situation, it is most difficult and much more important to 

detect seizures when they are rare and/or focal events 

(patients 1, 2, 7, and 8), than to miss several seizures in 

patients which are close to status-epilepticus (patient 3, 4, 9, 

14), that is, where seizures happen constantly over time.  

The bottom graph of Fig. 4 plots the time evolution of the 

PR area for patient 8 (as a typical example) as well as the 

calculated difference with and without weighting. The PR 

areas and the difference were re-calculated every hour. It can 

be observed that the difference in performance between the 

systems with and without channel weighting increases with 

time. In particular, during the first 4 hours of observation, 

the difference in performance is only ~5%, whereas at 17 

hours it is already ~21%.  

Weighting of channels is proposed for improved neonatal 

seizure detection. It is shown in this work that the largest 

benefit in performance is expected in the most difficult 

clinical situations where it is necessary to detect rare focal 

events in long term monitoring. The proposed measure of 

channel importance is completely data-driven and computed 

online in an unsupervised manner, which allows for its usage 

for other neurological applications which involve EEG 

monitoring. 
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Fig. 3.  Performance of the SVM-based seizure detection system with and 

without channel weighting for various channel subsets 
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Fig. 4.  Per-patient difference in PR areas for the SVM-based system (top), 

the evolution of the PR area in time for patient 8 with and without weighting 

(middle) and the calculated delta (bottom).  
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