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Abstract— Using a phase plane analysis (PPA) of the spatial
spread of trajectories of the fetal heart rate and its time-
derivative we characterize the fetal heart rate patterns (fHRP)
as defined by Nijhuis. For this purpose, we collect 22 fetal
magnetocardiogram using a 151 SQUID system from 22 low-
risk fetuses in gestational ages ranging from 30 to 37 weeks.
Each study lasted for 30 minutes. After the attenuation of the
maternal cardiac signals, we identify the R waves using an adap-
tive Hilbert transform approach and calculate the fetal heart
rate. On these datasets, we apply the proposed approach and
the traditionally used approaches such as standard deviation of
the normal to normal intervals (SDNN) and root mean square
of the successive difference (RMSSD). Heart rate patterns are
scored by an expert using Nijhuis criteria and revealed A, B,
and D patterns. A receiver operator characteristic (ROC) curve
is used to assess the performance of the metric to differentiate
the different patterns. Results showed that only PPA was able
to differentiate all pairs of fHRP with high performance.

I. INTRODUCTION

The evaluation of fetal heart rate patterns (fHRP) can

provide clinicians with valuable information regarding the

fetus health during pregnancy. One of the key features of the

fHR is the expression of sleep-wake cycles. Using ultrasound

studies, Nijhuis has classified fetal heart rate (fHR) into four

different patterns, A, B, C, and D. FHRP are recognized by

baseline frequency and variability, and the fetal heart rate

(fHR) accelerations and decelerations in a stable time frame

of at least three minutes [1]. Pattern A is characterized by a

stable heart rate with occasional accelerations/decelerations

with small oscillation bandwidth of less than 5 beats per

minute (bpm). Pattern C is characterized by a stable heart

rate with no accelerations with oscillation bandwidth slightly

greater than 5 bpm. Pattern B is characterized by a varying

heart rate with frequent acceleration/decelerations with wider

Manuscript received April 15, 2011; Revised June 20, 2011. This work
was supported by the U.S. National Institute of Health (NIH) under Grant
NIBIB/1R01EB07826-01A1. Asterisk indicates corresponding author.

*Rathinaswamy B. Govindan is with the Department of Obstetrics and
Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR
72205 USA (e-mail: rbgovindan@uams.edu).

S. Vairavan (e-mail: sxvairavan@ualr.edu), B. Sriram (e-mail: bxsri-
ram@ualr.edu) and J. D. Wilson (e-mail:jdwilson@ualr.edu) are with the
Graduate Institute of Technology, University of Arkansas at Little Rock,
Little Rock, AR 72205 USA.

H. Eswaran and C. L. Lowery are with the Department of Obstetrics and
Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR
72204, USA (e-mail: eswaranhari@uams.edu; Lowerycurtisl@uams.edu).

R. B. Govindan and H. Eswaran are also with the Division of Biomedical
Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
72205 USA.

H. Preissl is with the Department of Obstetrics and Gynecology, Uni-
versity of Arkansas for Medical Sciences, Little Rock, AR 72204 USA,
and also with the MEG-Center, University of Tuebingen, Tuebingen 72074,
Germany (e-mail: hubert.preissl@uni-tuebingen.de).

oscillation bandwidth greater than 5 bpm. Pattern D is

characterized by frequent long lasting and large accelerations

from the baseline with a wider oscillation bandwidth of

greater 10 bpm.

Kariniemi et al. reported the first fetal magnetocardiogram

(fMCG) using a super conducting quantum interference

device (SQUID) [2]. SQUID systems are non-invasive and

have excellent signal to noise characteristics compared to

fetal electrocardiogram (fECG) recordings taken from the

mother’s abdomen, especially after the 24th week of ges-

tation when the fECG is not easily detectable and, SQUID

systems also have high temporal resolution (<1ms). Multi-

sensor SQUID arrays have been used for fMCG detection

[3]. Compared to a single channel SQUID system, an array

has the advantage of covering a large area simultaneously

and offers the possibility of improved signal-to-noise ratio

by combining the fMCG detected from several channels.

One difficulty for the researcher interested in studying the

fHR using SQUID technology is that the healthy fetus may

move during the recording period which in turn may result

in significant changes in the amplitude or morphology of the

fMCG waveform [4]. Because a healthy fetus may become

active, the algorithms developed to extract the timing of R

waves from the typical adult ECG may have high error rates

when applied to either fMCG or fECG data. Utilizing fMCG

obtained from spatially dense SQUID array system, novel

approaches based on Hilbert transform have been introduced

to reliably identify the fetal R-wave [5, 6].

FHRP is one of the confounders in the quantification of

the heart rate variability using measures such as standard

deviation of normal to normal intervals (SDNN), root mean

square of successive differences (RMSSD), and power spec-

tral analysis. SDNN captures the long-term variability and

hence quantifies low frequency component of the heart rate

while RMSSD captures the short-term variability and hence

quantifies high frequency components of the heart rate. Since

fHR show important dynamical properties of the heart that

may help to delineate healthy from sick fetuses, it is impor-

tant to study them as a function of the heart rate patterns.

The traditional fHR analyses performed on the whole heart

rate tracings are now applied to the classified fHR patterns to

better understand the fetal maturation [7, 8]. To date, fHRP

is obtained by manual scoring and is a laborious process

and further it involves high degree of subjectivity. As a first

step towards the objective of automated scoring of the fHRP,

we propose a phase plane analysis (PPA). We compare its

performance with traditionally used measures such as SDNN

and RMSSD.
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II. MATERIALS AND METHODS

A. Materials

We obtain 22 fMCG datasets using a 151 SQUID array

system from 22 pregnant women that gave birth to healthy

neonate at term. The sample frequency is 312.5 Hz. The

gestational age of these fetuses varied between 30 and 37

weeks. Many important developments take place during third

trimester. For example, lung maturation and development of

sleepcenters are shown to develop between 30 weeks and

term. Thus any abnormalities that can happen in this time

period can be captured if we have a good benchmark data.

In addition, the expression of sleep-wake cycles in fHRP

and their evolution gives an insight in the fetal neurological

maturation [1]. Hence this time period is used to study

the fetal heart rate patterns. The data is bandpass filtered

between 0.5 to 50 Hz using Butterworth filter with zero phase

distortion. We attenuate the maternal cardiac signals using

signal space projection technique [9] and identify the fetal

R-wave using an adaptive Hilbert transform approach [5, 6].

One of the dataset was discarded because of the improper

identification of the fetal R wave. Heart rate was quantified as

beats per minute, bpm. These heart rates were scored for the

fHRP using Nijhuis definition (see Introduction) by visual

inspection. In this analysis we discarded data that are either

spurious beats or that formed parts of the transition from one

pattern to another. Further, pattern C was found in less than

2% of data, and hence this was discarded from the further

analysis. There are 117 three minute windows of pattern A,

51 three minute windows of B and 6 three minute windows

of pattern D. Fig.1 shows representative examples of patterns

A, B and D. We compute the heart rate variability parameters

such as SDNN, RMSSD, and the PPA metric in disjoint three

minute windows. For this purpose we use only three minute

windows in which the patterns remained stable.

B. Need for the new approach

One of the standard techniques used in the literature to

characterize fetal heart rate is Poincaré map analysis which is

a plot of (n+1)th beat versus nth beat. Concept of Poincaré

analysis is used in nonlinear dynamical system analysis to

characterize the recurrence property of the trajectories in the

phase space. In the case of heart rate analysis, though this

concept is borrowed from the nonlinear dynamical system

theory with the objective of characterizing the nonlinear

properties of the heart rate, the characterization of the map

usually involved computing the linear measures such as

SDNN and RMSSD. Thus, the complete characterization

of the nonlinear representation of the heart rate via the

Poincaré map has not been done before [10]. In earlier study

[11], nonlinear dynamical indices have been applied to the

heart rate of low-risk and Intrauterine Growth Restricted

(IUGR) fetuses. This study demonstrated that the correlation

dimension of the RR intervals of low-risk fetuses increases as

a function of gestation age, where IUGR fetuses do not show

such an increase. However, analysis are done on the delay

coordinates and not on the Poincaré map. To fill this gap
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Fig. 1. Fetal Heart Rate Patterns. (a)-(c) represents HRP A, B and D
respectively.

we introduce a novel method to quantify the fetal heart rate

which involves computing the fill factor of the trajectories of

the heart rate and its first time derivative in the space which

is traditionally called phase plane plot. Instead of plotting

the current value and its immediate time neighbor in the

phase space, we plot the heart rate and its time derivative.

This is to avoid the influence of the autocorrelation of the

heart rate in quantifying the PPA. Instead of the immediate

neighbor in time, a delayed value can also be plotted versus

the current value as done in the reconstruction of the attractor

from the single time series using Taken’s theorem [12].

However, the optimal delay value that can minimize the

autocorrelation of the heart rate may not be computable here

because of the power-law correlations in the heart rate [13].

Hence we plot the heart rate and its first time derivative and

quantify phase plane by computing the fill factor, namely the

area occupied by the trajectories. In this work we use this

approach to characterize the fHRP and study its performance

in distinguishing different fHRP.

C. Method

We denote the time marker of the j th R wave as τj and

define heart rate hrj at this point as 60/(τj − τj−1) where

the unit of τ is in seconds. We define the first time derivative

(hr′j) of the heart rate as (hrj+1 − hrj−1)/(τj+1 − τj−1).
A plot of hr′j versus hrj will yield the phase plane plot.

In contrast to the random scenario which will occupy the

entire space, the trajectories of the heart rate and its derivative

will be confined to a small subspace owing to the fractal

nature of the heart rate [13] and we quantify this property

by computing the area occupied by the trajectories.

To compute the area we use the Monte-Carlo approach. In

this approach we populate the phase plane with uniformly

distributed random numbers and calculate the probability
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Fig. 2. Phase plane plot of heart rate and its first time derivative for three
different heart rate patterns namely A, B and D.

(P ) of the random number that fall on the trajectories of

the heart rate and its time derivative. The probability P
multiplied by the range of the heart rate and the range of

hr′j will provide the area occupied by the trajectories. We

will also compute SDNN and RMSSD of the heart rate and

compare their performances in distinguishing the different

heart rate patterns. SDNN is computed by calculating the

standard deviation of the heart rate. RMSSD is computed by

calculating the standard deviation of the successive difference

of the heart rate.

SDNN =

√

√

√

√

1

N − 1

N
∑

j=1

(hrj − hrj)2 (1)

RMSSD =

√

√

√

√

1

N − 1

N−1
∑

j=1

(hrj − hrj−1)2 (2)

To compare the performance of the metric in separating the

three FHPRs namely A, B and D we use Receiver Operating

Characteristic (ROC) curve which is a plot of sensitivity and

1-specificity. The area under the ROC curve (AUC) gives the

degree of separation between the two groups.

III. RESULTS AND DISCUSSIONS

In Fig.2, we show the phase plane plot of the three

different heart rate patterns namely A, B and D (shown

in Fig.1). Qualitatively one can infer from Fig.2 that the

trajectories of pattern D span to a larger area and that of

pattern A are confined to a smaller region of the space while

for pattern B the extent of spread lies in between that of

patterns A and D. In the next step we quantify these patterns

by calculating the area of the phase plane.
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Fig. 3. Assessment of the performances of the three metrics namely, SDNN,
RMSSD and area of the phase plane. (a)-(c) represent the comparison
between different groups using SDNN. (d)-(f) represent the comparison
between different groups using RMSSD and (g)-(i) represent the comparison
between different groups using area of the phase plane. The area under the
ROC curve (AUC) is given in the inset. The diagonal line represents the
null hypothesis that there is no difference between the two groups. The knee
point (sensitivity and specificity) that best separates the two groups is also
given in the inset and is shown in black dot in the curve.

The ROC curves computed for SDNN, RMSSD, and the

area of the trajectories in the phase plane are shown in Fig.3.

As mentioned above we use the AUC as the performance

measure. Between patterns A and B, SDNN is able to dis-

tinguish them better than other measures (see Fig.3(a,d,g)).

Between patterns A and D, PPA performs (Fig.3h) the best

followed by SDNN (Fig.3b) and RMSSD (Fig.3e). Between

patterns A and D, again PPA (Fig.3i) performs the best

followed by RMSSD (Fig.3j) and SDNN (Fig.3c). Overall

only PPA is able to separate the different states with high

performance.

In this work the fHR is characterized using two linear

measures, namely SDNN and RMSSD and a nonlinear

measure namely the area spanned by the trajectories of heart

rate and its first time derivative. As the pattern A differs from

patterns B and D mainly in the variation of the heart rate, the

linear measure SDNN is able to distinguish between A and B

and between A and D. While the patterns B, D show almost

same degree of variation, SDNN is not able to distinguish

these two patterns clearly. On the other hand PPA quantifies

the interaction between the low and high frequency terms

and was able to distinguish patterns B and D when compared

to the linear measures. The performance of the RMSSD is

in between the performance of the other two metrics in the
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comparison of patterns between A and B and between A and

D. While it separates better the patterns between B and D

compared to SDNN.

SDNN and RMSSD are linear measures as they quantify

the linear properties of the heart rate while the area of the

phase plane quantifies the nonlinear property of the heart

rate. SDNN quantifies the long range correlations (low fre-

quency component) in the heart rate while RMSSD quantifies

the short range correlations (high frequency component) in

the heart rate. Phase plane plot from the way it is defined it

quantifies the interaction between the low and high frequency

components. Further, this interaction is quantified in terms

of the fill factor which is similar to the joint probability

distribution and hence it represents nonlinear property of the

heart rate.

In general nonlinear dynamical indices perform better

in characterizing a signal compared to the linear indices.

The starting point for the application of the nonlinear dy-

namical index to a signal is the representation of the one

dimensional signal in a multidimensional phase space. This

is accomplished using the delayed coordinates with delay

representing the decorrelation time [12]. Thus, the multidi-

mensional projection, by virtue of its construction, already

provides characterization of the interaction between multiple

autocorrelation function which is equivalent to the higher

order correlations and makes the quantification nonlinear.

Further, the topological property (the spatial organization

and recurrence nature) of the trajectories adds flavor to the

nonlinear dynamical indices which cannot be obtained in any

of the time domain analysis. Because of these reasons the

nonlinear dynamical indices perform better than the linear

measures.

IV. CONCLUSION

In this work the nonlinear measure is able to distinguish

all the patterns clearly. In future work, we will perform linear

discriminant analysis to improve the performance of the

PPA by combining with the SDNN and/or RMSSD analysis.

Further, we will also explore the quantification of sympatho-

vagal balance using the PPA.
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