
  

  

Abstract— Calculating entropy rate in physiologic signals 
has proven very useful in many settings. Common entropy 
estimates for this purpose are sample entropy (SampEn) and its 
less robust elder cousin, approximate entropy (ApEn). Both 
approaches count matches within a tolerance r for templates of 
length m consecutive observations. When physiologic data 
records are long and well-behaved, both approaches work very 
well for a wide range of m and r. However, more attention to 
the details of the estimation algorithm is needed for short 
records and signals with anomalies. In addition, interpretation 
of the magnitude of these estimates is highly dependent on how 
r is chosen and precludes comparison across studies with even 
slightly different methodologies. In this paper, we summarize 
recent novel approaches to improve the accuracy of entropy 
estimation. An important (but not necessarily new) alternative 
to current approaches is to develop estimates that convert 
probabilities to densities by normalizing by the matching 
region volume. This approach leads to a novel concept 
introduced here of reporting entropy rate in equivalent 
Gaussian white noise units. Another approach is to allow r to 
vary so that a pre-specified number of matches are found, 
called the minimum numerator count, to ensure confident 
probability estimation. The approaches are illustrated using a 
simple example of detecting abnormal cardiac rhythms in heart 
rate records. 

I. INTRODUCTION 
HYSIOLOGIC time series often are characterized by 

practitioners using a myriad of surrogate terms for 
entropy such as regularity, order, predictability, nonlinearity, 
non-Gaussianity, and complexity. For time series data, 
entropy rate is a more precise term than entropy, but both 
terms will be used here. In this context, the meaning of 
entropy has been around for over 60 years and follows the 
work of Shannon [1], Kolmogorov [2, 3], Sinai [4], 
Grassberger  and Procaccia [5], Eckmann and Ruelle [6],  
and others, who conceived of entropy rate as a measure of 
the degree to which template patterns repeat themselves.  
Repeated patterns imply order, and lead to reduced values of 
entropy.  There are often variations in how all these concepts 
are interpreted among physicists, engineers, and 
mathematicians, but there still remain many applications 
where these characteristics are extremely important in 
determining, for example, disease versus non-disease states.  

One particularly good recent example of the application of 
entropy rate is detecting the abnormal cardiac rhythm atrial 
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fibrillation (AF) [7]. AF predominantly occurs in older 
adults and can lead to stroke and other clinical deterioration.  
The hallmark of AF is its irregularity and clinicians 
sometimes even use the nonsensical descriptor “irregularly 
irregular” to underscore this fundamental difference from 
normal sinus rhythm (NSR). Figure 1 shows examples of AF 
and NSR for two heart records of RR (inter-beat) intervals. 
While both series have identical mean and standard 
deviation (original signals from the same patient were 
transformed to achieve this), there is a clear difference in the 
dynamics of the two signals that can be well-characterized 
by entropy rate. 

For long physiologic data records, entropy estimates can 
be extended to more detailed multi-scale entropy (MSE) 
analysis [8, 9] . This method has been successfully used to 
distinguish cardiac rhythms, including AF, in records of 
30,000 samples with scales up to 20 giving an effective 
sample size as low as 1500. The methods presented here 
allow improved estimation at much larger scales of MSE 
analysis up to 500 to 3000, where the number of values used 
to estimate sample entropy can be on the order of 10-60. 

An important step in improving the estimation and 
interpretation of entropy rates is to develop a solid 
theoretical understanding of the mathematics behind the 
problem. A framework of Renyi entropy (or q-entropy) rate 
estimation has been presented recently that is a step in this 
direction [10]. Among other results, this work provides a 
setting that includes both ApEn (q=1=> entropy rate) and 
SampEn (q=2=> quadratic entropy rate) and notions of 
differential and conditional entropy rate which are 
equivalent only when q=1.. To be more precise, sample 

Improved Entropy Rate Estimation in Physiological Data 
D. E. Lake 

P
 

Fig. 1. Examples of RR interval heart rate records for AF and NSR. 
Both signals have n=100 samples, mean of 1000 and standard 
deviation of 50 milliseconds. The AF signal is clearly less regular 
than the NSR signal and will have higher entropy rate. 
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entropy is a measure related to quadratic differential entropy 
rate of order q=2. Approximate entropy is related to both 
differential and conditional entropy rate of order q=1. This 
framework also suggests a (yet to be named) third measure 
equivalent to the conditional quadratic entropy rate.  

While the principles behind the approaches to entropy 
estimation presented here can be applied to all Renyi entropy 
rate measures, SampEn will be exclusively used to describe 
the algorithms. The methods will be applied to the AF and 
NSR example signals to illustrate their relative advantages. 

II. NOVEL APPROACHES TO ENTROPY ESTIMATION 

A. Densities versus probabilities 
 

Sample entropy was introduced by Richman and 
Moorman in 2000 [11, 12, 13] as a less-biased and more 
robust alternative to approximate entropy which was 
introduced by Pincus in 1991 [14, 15]. Estimates of sample 
entropy rely on counts of templates of length m matching 
within a tolerance r that also match at the next point, and 
have found utility in many applications including the 
prediction of infection and death in premature infants [16, 
17, 18, 19, 20, 21]. Sample entropy is the negative natural 
logarithm of the conditional probability that any two 
sequences of length m that match within tolerance r will also 
match at the subsequent point number m+1.  Counting the 
number of times that templates find matches is the central 
activity of entropy estimation. The number of matches of 
length m+1 is denoted by A and the number of matches of 
length m is denoted by B. The next intermediate result is a 
proportion or conditional probability p=A/B. More matches 
means more confident estimation of this probability, and, up 
to a point, better entropy estimation. From a statistical point 
of view, inaccurate estimates of a p occur when either A or 
the difference B-A are small. 

In long data records, when matches abound, entropy 
measures are accurately estimated this way even for larger 
m. If m is too large or r too small, then the number of 
template matches will be too small for confident estimation 
of the conditional probability.  If, on the other hand, m is too 
small and r too large, then all templates will match each 
other, and there is no ability to discriminate physiologic 
signals.  Strategies have been suggested, but there still 
remains large inter-study variability in parameter selection.  

Of these, the larger problem addressed here in 
implementing entropy estimation is picking the value of the 
tolerance r.  The original recipe has been to select r as 20% 
of the standard deviation σ of each time series segment, 
based largely on original conclusions in 1991 for 
implementing approximate entropy (ApEn) calculations [14]. 
Twenty years later, this convention is too often blindly 
applied to any and all studies with physiological data. 
Systematic approaches to picking r have been presented 
based on analysis of relative errors or discrimination 
capability in large data sets [7, 19].  

 An alternative approach to this issue arises from treating 

all signals as continuous-valued stochastic processes and 
applying concepts of probability density estimation [7, 10].  

The direct result is to convert the measured conditional 
probability to a density by normalizing the match count to 
the volume of the matching region, or (2r)m. As shown in the 
appendix, this operation reduces to adding a quantity log(2r) 
to the entropy estimate where log is the natural logarithm 
base e.  The result is quadratic sample entropy, or QSE, and 
is related to SampEn and the conditional probability p by 

 
QSE= -log(p/2r)= -log(p)+log(2r)=SampEn+log(2r) 

 
The measure QSE is not new, per se, but returns to notions 
of measuring limiting values as the volume of the matching 
region tends to 0 and is a quantity independent of r.  

A comparison of QSE with SampEn with m=1 is made in 
Figure 2. The match counts for templates of length 2 and 1 
were calculated for all tolerance values up to 50 
milliseconds. With SampEn, lower tolerance generally leads 
to lower probability of matching and appears to diverge as r 
approaches zero. Conversely, QSE approaches a finite, albeit 
noisy, limit as r gets small. For SampEn, the entropy of AF 
is clearly higher than for NSR for any fixed value of r. 
However, the QSE of AF is clearly higher than for NSR for 
the entire range of all values of r.  

Historically, the motivation behind fixing r in the 
approximate entropy was to discriminate deterministic or 
low-dimensional systems where QSE would always diverge 
while SampEn would converge to a finite limit. This is 
almost never a consideration for real physiological signals 
like heart rate and makes QSE a good practical choice. 

  This approach allows r to vary, as needed, based on the 
dynamics of individual physiologic signals. Also, with this 
formulation, estimates made with different values of r 
measure the same inherent quantity and can be compared 
directly across varying data sets and studies. Another 
advantage to this approach is that that the tolerance r can be 

 
Fig. 2. SampEn and QSE as a function of tolerance for 2 signals in 
Figure 1. Sampen starts to diverge while QSE converges for small r. 
Interpreting y-axis units for first two graphs is not straight-forward. In 
contrast, the equivalent white noise standard deviations are 
approximately 50 milliseconds for AF and 10 milliseconds for NSR. 
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optimally varied for each individual data record. This is 
analogous to varying the bin-widths of histograms to 
optimally depict the distribution of a particular data set. For 
example, Figure 2 suggests that AF might be best estimated 
with r=10 milliseconds where the curve starts to get noisy 
while the estimate for NSR could use a smaller tolerance 
about r=5 milliseconds. The curves for QSE also suggest 
that if computation time is not an issue, some sort of line-
fitting could be done to estimate the intercept at r=0. Care 
should be taken in this process, however, because 
assumptions of standard linear regression are clearly violated 
here. Most notably, the observations are not independent and 
do not have the same error variance, (i.e., 
heteroscedasticity). 

One issue that arises is how to interpret the numerical 
quantity of an entropy estimate. After all, the units of 
SampEn are logarithm of probability and the units of QSE in 
Figure 2 are an even more obscure, the logarithm of 
probability per millisecond. One advantage of the theoretical 
framework behind Renyi entropy rates is that there are 
theoretical known values for certain stochastic processes. 
For example, for Gaussian white noise with standard 
deviation σ, the value of the quadratic entropy rate is 
½log(4π)+log(σ) or 1.266+log(σ). This allows the 
conversion of QSE to the standard deviation of Gaussian 
white noise with the equivalent entropy. This conversion has 
units equal to the physiologic measurement and is shown in 
the last panel of Figure 2. The interpretation of this plot is 
that AF and NSR have entropies equivalent to white noise 
with standard deviations of approximately 50 and 10 
milliseconds respectively. Since both series already have 
equivalent overall standard deviations of 50, one could 
conclude that AF is very similar to Gaussian white noise 
without order while NSR has considerable order (reduces 
standard deviation by 80%). 

The differences between AF and NSR in records of length 
100 are readily discernible with most any current method. 
However, as shown in Figure 3, where entropy estimates are 
made using just the first n points of the signals, this does not 
necessarily remain the case as record lengths get shorter. To 
improve the accuracy of entropy estimation in this setting a 
new approach is described in the next section. This method 
provides stable QSE estimates and AF/NSR discrimination 
for records as short as n=8. 

B. Minimum numerator count 
 

An important distinction of SampEn is that self-matches 
are not counted [11, 12, 13]. This significantly reduces bias, 
but contributes to the problem of falling counts of template 
matches to the point that A (and even B) could be 0 leading 
to infinite or indeterminate estimates. This becomes an 
increasing concern for short records. Some methods have 
been proposed to remedy this situation [20], but this will 
often remain an issue when the exact same r is applied to a 
large population of possibly heterogeneous physiologic 

signals. 
 In addition, the accuracy of a probability estimate A/B is 

dependent on the magnitude of the numerator A and the 
denominator B. More precisely, the important number to be 
large is min(A, B-A). For example an estimate of 0.1 with 
100/1000 is more accurate than one with 1/10. Because QSE 
allows the flexibility to vary r, inaccurate probability 
estimates can often be avoided. As introduced in [10], one 
approach to accomplish this, called the minimum numerator 
count method. This approach generally looks to make r as 
small as possible, but varies r as needed until a pre-specified 
number of matches A are observed. Other additional 
restrictions, such as minimum denominator count on B, can 
also be used to control accuracy. 

In Figure 3, a minimum numerator count equal to the 
signal length was employed. This is a reasonable 
convention, but is by no means an optimal approach. For 
example, as shown in [7], a minimum numerator count of 5 
was found to give optimally accurate estimates detecting AF 
in short records of length n=12. In general the minimum 
numerator count should increase and the tolerance decrease 
as n becomes larger. 

C. Other approaches 
 

Another new recent approach involves noting that 
counting matches is a special case of kernel density 
estimation [22].  In particular, density estimation in QSE 
uses a uniform kernel. Drawing upon the vast amount of 
theoretical work in this field, formulas for optimal 
asymptotic selection of r (related to the bandwidth in kernel 
density jargon) as a function of n can be found. The 
MATLAB function KSDENSITY implements some of these 
results in the univariate case and multivariate versions are 
feasible. One aspect of this MATLAB implementation that 
worth noting is a robust estimate of standard deviation as a 
basis for selecting matching tolerance. As noted in [19], 
SampEn is extremely sensitive to outliers or spikes in 

 
Fig. 3. Methods of QSE as a function of first n point for 2 signals in 
Figure 1. The minimum numerator count method provides stable 
estimates of QSE for lengths as short as n~8. Standard methods 
degrade starting for n~50 and degenerate starting at n~15.   
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physiologic data. It turns out this is a very good thing for 
detecting sepsis in neonatal infants, but in most cases a 
measure robust in the presence of outliers is desired. 

III. CONCLUSION 
    Accurate algorithms and careful interpretation of entropy 
rate estimates are needed to optimally characterize and 
discriminate physiological signals. A minimum numerator 
algorithm works well for short records. Reporting entropy 
estimates in equivalent white noise units may provide better 
interpretation and understanding for clinical practice. 

APPENDIX 
The derivation of QSE and its relationship to differential 

quadratic entropy rate is discussed in more detail here. A 
data record consists of a series of n consecutive equally- 
spaced observations assumed to come from a continuous-
valued stationary stochastic process. The template  xm(i) is 
the vector containing the m consecutive intervals xi,xi+1, 
…,xi+m-1. Note that xm(i)  has a well-defined marginal 
density, say fm. For a matching tolerance r>0, an instance 
where all the components of xm(i) are within a distance r of 
another template xm(j) is called a template match. Let Bi 
denote the number of template matches of length m with 
xm(i) and Ai denote the number of template matches of length 
m+1 with xm+1(i). Also let A=∑Ai and B=∑iBi denote 
respectively the total number of matches of length m+1 and 
m. Then the ratio p=A/B is the conditional probability that 
subsequent points of a set of closely matching m intervals 
also remain close and match. The sample entropy is the 
negative logarithm of this probability 
  

SampEn=-log (p)=- log(A/B)=log(B)-log(A) 
 

Note that Bn can be removed from B to reflect the lack of a 
subsequent point and allow the possibility of p=1.  

When the average match counts A/n and B/n are suitably 
normalized by their matching volume and r is sufficiently 
small, the negative logarithms are respectively estimates of 
the quadratic entropy of the marginal densities fm+1 and fm. 
The difference of these two estimates defines QSE 
 

QSE=-log((A/n)/(2r)m+1)-(-log((B/n)/(2r)m)) 
 
This reduces to 
 

QSE=SampEn+log(2r) 
 
and thus estimates the differential quadratic entropy rate. 
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