
  

  

Abstract— Sleep and wake state have different influences on 
a variety of recordable signals that make up the 
polysomnogram. Conventional sleep stages are dependent on 
analysis of electroencephalogram (EEG) waveforms. Non-EEG 
approaches can provide a different view of sleep. One such 
example is the electrocardiogram (ECG) derived sleep 
spectrogram, which computes the coupling and coherence of 
heart rate variability and respiratory tidal volume influences 
on the ECG R wave. Novel insights into sleep physiology and 
pathology are available through this technique. 

I. INTRODUCTION 
RADITIONAL approaches to characterize sleep have been 
dominated by single-physiology methods, dominated by 

electroencephalogram (EEG) waveforms. Thus, non-rapid 
eye movement sleep stage N1, N2 and N3, and REM sleep 
are recognized. However, such characterization has 
numerous problems, including the age-related loss of stage 
N3, also called slow-wave sleep, the need for EEG 
recording, and individual differences-related alterations in 
the EEG.  
 Several alternate methods to characterize sleep have been 
proposed. These include: 1) Measuring motor activation 
during sleep, typically periodic limb movements.  
Fragmented sleep can have excessive motor activation, and 
excessive motor activation can fragment sleep, but PLMs 
may be entirely absent in sleep apnea patients and other 
causes of fragmented sleep. 2) Autonomic approaches such 
as pulse transit time, peripheral arterial tonometry (PAT) and 
heart-rate based metrics (variability, transient rate kinetics). 
Periods of vagal dominance are associated with stage N3, 
but HRV metrics are difficult to use when variability is low, 
such as in heart failure, diabetes, beta-blocker use, or aging. 
Moreover, the exact temporal borders of periods of vagal 
dominance are hard to define. Cyclic variation in heart rate 
is a useful marker of sleep apnea but not in those with low 
HFV. The same limitations apply to Pulse Transit Time – it 
is hard if not impossible to delineate clear periods of “good” 
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vs. “non-good” sleep. PAT characteristic can correlate with 
conventional slow wave sleep, and may have some utility as 
a non-EEG marker of sleep quality. 3) Hemodynamic 
monitoring  show that sleep-related blood pressure 
reductions (“dipping”) is a marker of health, and adverse 
effects of non-dipping have a large volume of supportive 
data. Dipping does not occur abruptly and thus cannot 
capture short-term changes. Non-dipping can occur in those 
with good sleep quality by other measures. 4) Respiration 
characteristics can identify sleep quality. For example, 
periods of stable breathing dominate sleep-breathing in 
health and occur even in those with severe sleep apnea. 
However, respiratory abnormality is not present in those 
with sleep fragmentation from other reasons, such as pain, 
epilepsy, auditory noise. 5) Oxygenation and ventilation 
tracking is useful only when clearly abnormal as sleep 
quality markers. 6) Endocrine and metabolic markers, such 
as cortisol and growth hormone levels, cytokines, 
inflammatory biomarkers, or glucose disposal during sleep, 
have not been shown to be practical tools to measure sleep 
quality. 

II. EFFECTIVE AND INEFFECTIVE SLEEP 
A new concept is proposed, that of “sleep effectiveness”. 

The term effectiveness is used to distinguish it from 
“efficient” (as the term sleep efficiency has a specific 
meaning in sleep science) and “fragmented” (as there are 
numerous opinions, time-scales and definitions of sleep 
fragmentation).  The term “restorative” and “non-
restorative” are already used in the literature but definitions 
are unclear. Effective sleep is conceptualized as a sleep state 
that allows the normal functions of sleep (for brain and 
body; a desirable sleep state to be in), and ineffective sleep 
as a state that does not. An individual can be “efficient and 
ineffective” as well as “inefficient and effective” if the 
period of sleep itself is of high quality.  The concept is not 
sleep stage restricted, or graded, but bimodal.  
 Effective sleep is largely concordant, such that during 
periods of effective sleep, all components of the sleep 
system are in a desirable mode, such as stable sleep and 
breathing, blood pressure dipping, normal oxygenation and 
ventilation, and absence of EEG arousals. Discordant 
effectiveness can occur, such as REM sleep hypoventilation, 
where the quality of REM sleep may be good but gas 
exchange not.  

III. MAPPING EFFECTIVE AND INEFFECTIVE SLEEP 
The key to quantifying sleep effectiveness is to integrate 

information from more than one physiological system. An 
excellent example of ineffective sleep is severe sleep apnea, 
where (Figure 1) all recorded measures show linked 
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oscillations every 25-40 seconds (apneas, arousals and an 
EEG dominated by phasic complexes called Cyclic 
Alternating Pattern, heart rate accelerations and 
decelerations, oxygen desaturation, periodic limb 
movements, blood pressure and muscle sympathetic nerve 
activity surges). As various physiological systems seem 
linked during sleep, computing coupled and coherent 
oscillations may provide a view of sleep unconstrained by 
the limitations of any single system. For example, heart rate 
variability-respiration, EEG-blood pressure, respiration-
blood pressure and heart rate-blood pressure are all plausible 
coupled system amenable to computational analysis. The 
method we have developed uses the electrocardiogram 
(ECG), from which is extracted autonomic and respiratory 
influences, both of which are intensely modulated by state 
(sleep and wake). The resulting “sleep spectrogram” is a 
map of coupled oscillations during sleep, which yields 
unique insights into physiological and pathological sleep.   

IV. CARDIOPULMONARY COUPLING SLEEP SPECTROGRAMS 
The cardiopulmonary coupling technique [1] is based on a 

continuous electrocardiogram (ECG) signal and employs 
Fourier-based techniques to analyze 2 features of the signal: 
(1) the variability of the cardiac interbeat (RR) interval 
series and (2) the fluctuations in QRS amplitude induced by 
respiration--the ECG-derived respiration (EDR) signal [1]. 
These signals have 2 basic patterns: a high frequency 
component due to physiological sinus arrhythmia that 
reflects breath-to-breath fluctuations, and a low frequency 
component that reflects cyclic variation across multiple 
breaths. Using the Fourier transform, the R-R interval time 
series and the associated EDR signals are first decomposed 
into a set of sinusoidal oscillations with specific amplitudes 
and phases at each frequency. Two factors are considered in 
evaluating the strength of the coupling between these 2 
signals: (1) If, at a given frequency, both signals have 
relatively large oscillation amplitudes, then it is likely that 
these 2 signals are coupled with each other. This can be 
measured by computing the cross-spectral power, i.e., the 
product of the powers of the two individual signals at a 
given frequency. (2) If 2 oscillations at a given frequency are 
synchronized with each other (i.e., they maintain a constant 
phase relationship), this can be measured by computing the 
coherence of these signals. We use the product of the 
coherence and the cross-spectral power to weight these 2 
effects in order to quantify the degree of the 
cardiopulmonary coupling.  
 
Using a single lead ECG, an automated beat detection 
algorithm is used to detect beats and classify them as either 
normal or ectopic based on their morphology and timing. In 
addition, amplitude variations in the QRS complex due to 
shifts in the cardiac electrical axis relative to the electrodes 
during respiration and changes in thoracic impedance are 
determined. These fluctuations in the mean cardiac electrical 
axis (typically between 1 degree and 12 degrees peak-to-
peak) correlate with phasic changes in the respiratory cycle. 
From these amplitude variations, a surrogate ECG derived 

respiratory signal (EDR) is obtained as previously described. 
A time series of normal-to-normal sinus (N-N) intervals and 
the time series of the EDR associated with these N-N 
intervals are then extracted from the original R-R interval 
time series. Outliers due to false or missed R-wave 
detections are removed using a sliding window average filter 
with a length of 41 data points, where central points lying 
outside 20% of the window average are rejected. Since 
Fourier analysis requires evenly sampled data, the resulting 
N-N interval series and its associated EDR signal are 
resampled at 2 Hz using cubic spline interpolation. At this 
sampling rate the Nyquist frequency allows detection of 
coupling frequencies up to 1 Hz. The cross-spectral power 
and coherence of these 2 signals are calculated over a 1024 
sample (8.5 min) window using the fast Fourier transform 
applied to the 3 overlapping 512 sample subwindows within 
the 1024 coherence window. In each sub-window, the DC 
components and linear trends are removed and the data 
windowed using the Hanning (cosine) function before 
calculation of the Fourier transform. The 1024 coherence 
window is then advanced by 256 samples (2.1 min) and the 
calculation repeated until the entire N-N interval/EDR series 
are analyzed. 
 
For each 1024 window, the product of the coherence and 
cross-spectral power is used to generate a spectrogram of 
coupling powers at each frequency vs. time. This technique 
thus generates a moving average of the oscillatory 
frequencies of the coupling between heart rate and 
respiration. During sleep, a predominance of power in the 
low-frequency band is associated with periodic sleep 
behaviors and periodic respiration during SDB, while a 
predominance of power in the high-frequency band is 
associated with physiologic respiratory sinus arrhythmia and 
deep sleep with stable respiration. To quantify the low and 
high frequency coupling power distributions, in each 1024 
window the coherence and cross power product is used in 
calculating the ratio of the sum of the 2 maximal coherent 
cross power peaks in the low-frequency (0.01-0.1 Hz) band 
to the sum of the 2 maximal peaks in the high-frequency 
(0.1-0.4 Hz) band. 

The low and high-frequency coupling regimes has only 
weak correlation with standard sleep staging but did follow 
cyclic alternating pattern (CAP) scoring, where low-
frequency coupling is associated with CAP and high-
frequency coupling with non-CAP. It was also determined 
that the ratio of the sum of the 2 maximal peaks in the very 
low frequency (0-0.01Hz) to the combined power of the 2 
maximal peaks in each of the low- and high-frequency bands 
could be used to estimate wake/REM periods where a 
predominance of power in the very low-frequency band is 
associated with wake/REM periods. For each of the 3 sleep 
states of non-CAP, CAP, and combined wake/REM, 
separate receiver-operator curves were calculated over a 
range of power thresholds, and the thresholds giving the 
maximum combined sensitivities and specificities for that 
state were selected as optimal for the detection of that state. 
Using these thresholds, sleep demonstrating predominantly 
non-CAP, CAP, and wake/REM states could be identified. 
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Analysis of the PhysioNet Sleep Apnea Database using 

the cardiopulmonary coupling technique indicated that 
elevated power in the low frequency coupling region 
coincided with periods of scored apnea/hypopnea. 
Sensitivities and specificities for minute-by-minute 
apnea/hypopnea detection were calculated for a range of low 
frequency coupling powers and low/high coupling ratios. 
Receiver operator curves were then calculated and the 
thresholds giving the maximum combined sensitivity and 
specificity for apnea/hypopnea detection was selected as 
optimal. These detection thresholds required that the 
minimum low frequency power be greater than 0.05 
normalized units and that the low to high frequency ratio be 
>30 to define periods of probable apnea/hypopnea, which we 
term elevated LFC (e-LFC).  
 

Some spectrograms from the PhysioNet Sleep Apnea 
Database demonstrated periods of near-constant frequency 
spectral peaks in the e-LFC region that was reminiscent of 
the oscillations of heart rate variability seen in Cheyne-
Stokes respiration in heart failure patients, which has a 
relatively constant cycle length. To explore this phenomenon 
further, we applied the algorithm to the PhysioNet 
Congestive Heart Failure Database, with the expectation that 
the database would provide more prolonged episodes with 
central periodic oscillations. Since the period of central 
apnea can be as slow as 120 seconds or longer we use the 
frequency band between 0.006 and 0.1 Hz to define narrow 
spectral band e-LFC (putative central sleep apnea, periodic 
breathing, or complex sleep apnea). We required (1) a 
minimum power in this band of 0.3 normalized units and (2) 
that the coupling frequency of each pair of consecutive 
measurements remains within 0.0059 Hz of each other over 
5 consecutive sampling windows (totaling 16.9 continuous 
minutes). Periods of e-LFC not meeting these criteria were 
defined as broad spectral band e-LFC (putative obstructive 
sleep apnea). The amounts of broad and narrow spectral 
band coupling in e-LFC bands are again expressed as the 
percentage of windows detected in relation to the total sleep 
period. Thus, the narrow spectral band e-LFC identifies 
periods with oscillations that have a single dominant 
coupling frequency, suggesting central sleep apnea or 
periodic breathing. The broad spectral band e-LFC identifies 
periods with oscillations that have variable coupling 
frequencies, suggesting an alternate process, which we posit 
is dominance of anatomic upper airway obstructive 
processes. As it takes 16.9 min of continuous narrow-band 
cardiopulmonary coupling to reach the detection threshold, 
we estimated that this would be approximately equal to an 
averaged central apnea index of 5/h of sleep, assuming 6 h 
of sleep and a periodic breathing cycle length of 
approximately 35 sec. Thus the cardiopulmonary coupling 
technique can be used to detect apnea/hypopnea and 
differentiate these into obstructive vs. central. In essence, 
chemoreflex effects on sleep breathing can be mapped and 
quantified.  

 
 

TABLE I 
CARDIOPULMONARY COUPLING VARIABLES 

Designation Frequency (Hz) Clinical / pathological correlate 

HFC 0.1-0.4 Stable / effective sleep 
LFC 0.01-0.1 Unstable / ineffective sleep 
VLFC 0.001-0.01 Wake/REM/sleep-wake 

transitions 
e-LFC 0.01-0.1 Subcomponent of LFC associates 

with fragmented sleep and sleep 
apnea 

HFC: high, LFC: low, VLFC: very low, frequency coupling 

V. RESULTS OF SLEEP SPECTROGRAM ANALYSIS IN 
INDIVIDUAL SUBJECTS AND LARGE DATABASES 

   The method is a non-linear approach to amplify the 
spectral peaks. If one signal is weak, e.g., the HRV can be 
reduced with age, beta-blockers, sleep apnea or congestive 
heart failure, the EDR component is sufficient. Similarly, the 
EDR can be noisy but when computed with the HRV in this 
analysis, the dominant frequencies come through cleanly. 

High frequency coupling is reduced and low frequency 
coupling increased in states of fragmented sleep, including 
depression, fibromyalgia, sleep apnea, and heart failure. 
Sleep spectrogram biomarkers are heritable, and are 
associated with hypertension and stroke [2-4]. High 
frequency coupling increased are seen in the sleep following 
sleep deprivation, during positive pressure titration, 
following sleep restriction, and with the use of 
benzodiazepines. 

EEG power in the 0.5 to 4 Hz is used as a marker of 
homeostatic sleep drive. While high frequency coupling 
occurs in both stage N2 and N3, there is a relationship with 
relative delta power. The ebb and flow of sleep homeostatic 
drive across the night is thus reflected in simultaneous 
changes in cardiopulmonary coupling.  

Blood pressure decreases during the sleep period; this 
phenomenon of “dipping” is considered a sign of autonomic 
health. Dipping occurs only during sustained periods of high 
frequency coupling, providing an ECG-spectrogram 
biomerker of a desirable cardiovascular regulatory state. 
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Fig. 1. ECG-derived sleep effectiveness.  From top: 1) 
Absolute delta power 0-4 Hz (arbitrary units). Note the 
higher absolute Delta power in the first half of the night 
compared to the second half. 2) 0-4 Hz delta power 
normalized to total EEG power. Note that the first vs. second 
half of night differences are reduced. 3) The logarithm of the 
ratio of high frequency to low frequency cardiopulmonary 
coupling. Note the correspondence between delta power 
fluctuations and the CPC coupling ratios. 4) The 
cardiopulmonary coupling sleep spectrogram. Note the high 
correlation (r=0.84 in this example) between HFC power and 
normalized delta power, across the entire night. 
 

 
 
Fig. 2. Blood pressure and sleep effectiveness. From top: 
conventional stages (REM sleep in blue), intra-arterial 
systolic and diastolic blood pressure, and the sleep 
spectrogram. Note that dipping occurs in association with 
high frequency coupling (arrow) even thought conventional 
sleep is stage N2. Thus, the ECG-spectrogram provides 
improved detection of a sleep state with desirable 
hemodynamic features. 
 
 

VI. CONCLUSION 
Mapping coupled oscillations provide new insights into 
sleep physiology and pathology. The ease of acquiring the 
ECG allows the ECG-spectrogram to provide repeatable 
dynamic markers of state. 
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