
  

  

Abstract—The aim of this study is to implement a high-
accuracy automatic detector of the Cyclic Alternating Pattern 
(CAP) during sleep. EEG data from four healthy subjects were 
used. Both the C4-A1 and the F4-C4 leads were analyzed for 
this study. Seven features were extracted from each of the two 
leads and two separate studies were performed for each set of 
descriptors. For both sets, a Support Vector Machine was 
trained and tested on the data with the Leave One Out cross-
validation method. The two final classifications obtained on the 
two sets were merged, by considering a CAP A phase scored 
only if it had been recognized both on the central and on the 
frontal lead. The length of the A phase was then determined by 
the result on the fronto-central lead. This method leads to 
encouraging results, with a classification sensitivity on the 
whole dataset equal to 73.82%, specificity equal to 85.93%, 
accuracy equal to 84,05% and Cohen’s kappa equal to 0.50. 

I. INTRODUCTION 
N healthy conditions, the Cyclic Alternating Pattern 
(CAP) is a phenomenon occurring on the 
Electroencephalogram during non-REM sleep. It consists 

of a periodic activity in which a phase of brain activation, 
called phase A, and a phase of recovery or return to the 
background, called phase B, alternately appear. Phase A and 
B can both last between 2 and 60 seconds. Phases A have 
characteristics that may vary in amplitude and frequency of 
the signal: three different subtypes are recognized: A1, 
characterized by strong delta waves (0.5-4 Hz); A2, 
containing rapid activities that occur for 20-50% of the total 
activation time, and A3, characterized by rapid activities, 
especially beta (16-30 Hz), that occupy more than 50% of 
the total time [1]. 

Nowadays CAP is gaining increasing importance in 
clinics. In fact, although being a physiological phenomena, it 
is also a marker of sleep instability and can be correlated 
with several sleep pathologies. Increased amounts of CAP 
are a regular finding in obstructive sleep apnea syndrome 
(OSAS) [2] as a reaction of the sleeping brain to a repetitive 
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breathing disturbance. Primary insomnia shows increased 
amounts of CAP, compared with healthy sleepers [3]. 
Furthermore, CAP A phase has been interpreted in several 
studies as a kind of gate through which pathologic events 
more easily occur. The gating effect has been demonstrated 
among several sleep disturbances such as Periodic Leg 
Movements (PLM) [4-6], sleep bruxism [7], and epilepsy [8-
10]. The ratio between NREM CAP sleep and total NREM 
sleep (CAP-rate), and the different distribution of CAP A 
phases through the sleep stages can be measured in sleep 
centers to characterize such pathologies. These indexes can 
be considered as a valuable measure of sleep quality, 
however, the measure of CAP has not yet been introduced in 
regular clinical practice due to the time necessary for the 
neurologists for visually scoring CAP phases A on the whole 
night sleep recordings.  

Some studies exist in literature that have developed 
automatic CAP classifiers, such as [11-14]. While all these 
methods achieve good results, none of them is yet applied to 
clinical practice since they either require some amount of 
clinician intervention or do not achieve a sufficient accuracy 
in the classification to allow for a reliable diagnosis.  

According to Terzano [15], CAP is a global EEG 
phenomenon involving extensive cortical areas. Therefore, 
phases A should be visible in most of the EEG leads. Bipolar 
derivations such as Fp1-F3, F3-C3, C3-P3, P3-O1 or Fp2-
F4, F4-C4, C4- P4, P4-O2 guarantee a favorable detection of 
the phenomenon. Monopolar EEG derivations (C3-A2 or 
C4-A1 and O1-A2 or O2-A1), eye movement channels and 
submentalis EMG, currently used for the conventional sleep 
staging scoring, are also essential for scoring CAP.  

Many studies, e.g. [14], refer to a single EEG lead for the 
classification, the C3-A2 or the C4-A1 lead. However, 
classifications performed using only this lead show a large 
number of false positive A phases in the identification. In 
fact, many of the automatically recognized activations 
correspond to amplitude-frequency changes on the used 
central lead, but of regular EEG rhythms on the others. In 
Fig. 1 we report an example of visual CAP scoring over 
multiple leads. As shown in the picture, a CAP A phase is 
scored only if it is visible on all the leads (example on the 
right), while if the frequency-amplitude change is only 
present on the central lead (example on the left) it is not 
scored. Therefore, in this case, an automatic detector only 
trained and tested on the C4-A1 lead would classify a false 
positive.  
In the light of this, the aim of our study is to create an 
automatic detector of phases A of CAP capable of achieving 
a higher accuracy and reliability in the classification. 
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Since the fronto-central leads are also 
visual classification of CAP, here the F4-C
together with the monopolar central lead
classification accuracy. It was preferred 
leads, since it is less prone to muscle o
artifacts. An A phase was recognized only 
both the central and the fronto-central  lead.

Fig. 1: Example of visual classification of CAP. The E
left is not classified as an A phase because it only ap
lead, while the one on the right is classified as an A 

clearly visible on all the leads. 

II. MATERIALS AND METH

A. Data acquisition 
Four healthy adult subjects, two males 

underwent a polysomnographic recordin
Center of the Department of Neurology 
Maggiore di Parma. The age of the subject
25 and 37 years. They did not present 
disorders and were free of drugs affec
Nervous System. Among others, the C4-A
leads were extracted. An expert neurologis
the macrostructure of  sleep, in terms of N
REM distinction, and the microstructure, in
phases. Thus, the available data were, i
seconds of signal, 13,439 of which repres
phases A and 117,750 representative of the 
total number of examined phases A was 174

B. Extraction of the features 
The portions of the recording relative to

were removed from the analysis. From t
traces seven descriptors for each lead were e
 - Five band descriptors. The EEG signal
 with a low-pass anti-aliasing filter at 30 H

Fig. 2: Trend of the descriptors extracted from the F4-C
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example of the trend of the extract
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C. Pre-processing  
 The features were used as the tr
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C4 (left) and the C4-A1 (right) leads in correspondence of the visually-s
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For the differential variance of the EEG
value was computed. 

The desired output data consisted of bin
the same length of the features (one sampl
where at each sample was assigned value 1 
a visually-scored activation, 0 if belo
background. Since it does exist more bac
activation, there were more zeros than o
order to avoid biasing the classifier, a re-sa
set was created that included an equal numb
indicative of an A phase and of those ind
background. This was done simply by takin
only a fraction of the samples correspo
background, uniformly distributed throug
descriptors. 

D. Choice of the SVM parameters 
Two separate studies were performed for 

descriptors, and for each study, soft-m
Vector Machines with different kernels wer
a Polynomial and a Gaussian kernel were
classification, and the Leave One Out (LOO
used to select the optimal kernel parameters
sigma for the Gaussian kernel and the pol
for the polynomial kernel) and the error pen

The SVMs with each kernel and for eac
of parameters were trained over data from 
then tested on the remaining subject. Th
then averaged over the subjects, and the be
of the parameters was chosen by maximizin
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where Pr(a) is the relative observed agre
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the probabilities of each observer randoml
category. For the polynomial  kernel, the
between 1 and 6, while the C factor varie
and 215; for the Gaussian kernel, the sigma v
2-13 and 213 and the C factor varied between 

Fig. 3: Example of choice of the parameters: the optim
for the features extracted from the central lead is obtain

σ=23. 
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TABLE I 
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III. RESULTS 
The results of the classification are reported

TABLE II 
STATISTICS OF THE A PHASES AUTOMATIC SCORIN

THE VISUAL SCORING. 
Subject Sens (%) Spec (%) Acc (%) 

1 68.45 88.32 85.58 
2 77.20 82.59 82.00 
3 72.80 88.88 85.43 
4 79.55 82.86 82.36 

Total 73.82 85.93 84.05 
A graphic example of the results of the cla
subject is reported in Fig. 5. 

Fig. 5: Classification results: an example of the scori
Combining together the scorings performed on the C4-

C4 leads some false positives are elimina

IV. DISCUSSION AND CONCLUSI
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duration principles can be applied to th
phases A to score the actual CAP. In fac

d in Table II. 

NG COMPARED TO 

Cohen’s kappa 
0.48 
0.39 
0.59 
0.48 
0.50 

ssification of a 

 
ing of subject 1. 
-A1 and on the F4-
ated. 

IONS 
n sleep studies, 
haracterization 
ng a reliable 

damental for its 
nce this would 

scoring time-

bjects and this 
pth by testing it 
pect to results 
application of 

accuracy and a 
obtained. With 

orming CAP A 
method has the 
econd scoring, 
terion between 
y and Cohen’s 

are comparable 
different visual 
ector Machines 
method for the 
performance is 

works [14] and 

ed before the 
he recognized 
ct, even minor 

differences in length between aut
scored phases A may bring to su
scoring of a CAP sequence. In o
simply applying an AND rule, th
on the two sets of features toget
methods accounting for temporal 
as Hidden Markov Models, could

REFERENC

[1] M. G. Terzano and L. Parrino, "Origin
Alternating Pattern (CAP): REVIEW 
Reviews, vol. 4, pp. 101-123, 2, 2000.  
[2] M. G. Terzano, L. Parrino, M. Bosel
Giovanni, "Polysomnographic analysis
obstructive sleep apnea syndrome by m
pattern," Journal of Clinical Neurophys
1996.  
[3] M. G. Terzano, L. Parrino, M. C. Sp
and A. Smerieri, "CAP variables
electroencephalogram markers for p
Neurophysiology, vol. 114, pp. 1715-1723
[4] B. El-Ad and R. D. Chervin, "The case
vol. 23, pp. 450-451, 2000.  
[5] J. Haba-Rubio, L. Staner and J. P. 
periodic limb movements during sleep?"
520, 2002.  
[6] L. Parrino, M. Boselli, G. P. Bucc
Giovanni and M. G. Terzano, "The cyc
gate-control on periodic limb movem
movement sleep," Journal of Clinical Neu
323, 1996.  
[7] T. Kato, J. Y. Montplaisir, F. Guitard,
J. Lavigne, "Evidence that experimental
consequence of transient arousal," J. De
2003.  
[8] I. Eisensehr, L. Parrino, S. Noachtar, A
"Sleep in Lennox-Gastaut syndrome: The
pattern (CAP) in the gate control of cli
polyspikes," Epilepsy Res., vol. 46, pp. 24
[9] P. Halász, M. G. Terzano and L. Parri
the microstructure of sleep-wake contin
epilepsy," Neurophysiologie Clinique, vol
[10] M. G. Terzano, L. Parrino, S. Anelli 
generalized spike-and-wave discharges du
pattern," Epilepsia, vol. 30, pp. 772-781, 1
[11] U. Barcaro, E. Bonanni, M. Maestri, 
Terzano, "A general automatic method fo
microstructure," Sleep Med., vol. 5, pp. 56
[12] R. Ferri, O. Bruni, S. Miano, A. S
Terzano, "Inter-rater reliability of sleep c
scoring and validation of a new com
method," Clinical Neurophysiology, vol. 1
[13] R. Largo, C. Munteanu and A. Ro
wavelets and GA tuning," in 2005, pp. 44-
[14] S. Mariani, A. M. Bianchi, E. Manfre
L. Parrino, M. Matteucci, A. Grassi, S
"Automatic detection of A phases of the c
sleep," in Engineering in Medicine and B
Annual International Conference of the IE
[15] M. G. Terzano, L. Parrino, A. Sherie
C. Guilleminault, M. Hirshkowitz, M. M
Rosa, R. Thomas and A. Walters, "Atlas, 
for the scoring of cyclic alternating pat
Sleep Med., vol. 2, pp. 537-553, 2001.  
[16] S. Mariani, E. Manfredini, V. Rosso, 
M. Matteucci, M. G. Terzano, S
"Characterization of A phases during the
sleep," Clinical Neurophysiology, 2011.  
 [17] A. Rosa, G. R. Alves, M. Brito, M. 
and automatic cyclic alternating patter
reliability study," Arq. Neuropsiquiatr., vo

 

omatically- and visually-
ubstantial changes in the 
order to do so, instead of 
e SVMs could be trained 
ther, or different scoring 
pattern recognition, such 

d be applied. 

ES 
n and Significance of the Cyclic 

ARTICLE," Sleep Medicine 

lli, M. C. Spaggiari and G. Di 
s of arousal responses in 

means of the cyclic alternating 
siology, vol. 13, pp. 145-155, 

paggiari, V. Palomba, M. Rossi 
s and arousals as sleep 
primary insomnia," Clinical 
3, 2003.  
e of a missing PLM [2]," Sleep, 

Macher, "Periodic arousals or 
" Sleep Med., vol. 3, pp. 517-

cino, M. C. Spaggiari, G. Di 
clic alternating pattern plays a 
ments during non-rapid eye 
urophysiology, vol. 13, pp. 314-

, B. J. Sessle, J. P. Lund and G. 
lly induced sleep bruxism is a 
ent. Res., vol. 82, pp. 284-288, 

A. Smerieri and M. G. Terzano, 
e role oft the cyclic alternating 
inical seizures and generalized 
41-250, 2001.  
ino, "Spike-wave discharge and 
nuum in idiopathic generalised 
l. 32, pp. 38-53, 2002.  
and P. Halasz, "Modulation of 

uring sleep by cyclic alternating 
1989.  
L. Murri, L. Parrino and M. G. 

or the analysis of NREM sleep 
67-576, 2004.  
Smerieri, K. Spruyt and M. G. 
cyclic alternating pattern (CAP) 
mputer-assisted CAP scoring 
116, pp. 696-707, 2005.  
osa, "CAP event detection by 
-48.  
edini, V. Rosso, M. O. Mendez, 
. Cerutti and M. G. Terzano, 

cyclic alternating pattern during 
Biology Society (EMBC), 2010 
EEE, 2010, pp. 5085-5088.  
eri, R. Chervin, S. Chokroverty, 
Mahowald, H. Moldofsky, A. 
rules, and recording techniques 
ttern (CAP) in human sleep," 

M. O. Mendez, A. M. Bianchi, 
. Cerutti and L. Parrino, 
e Cyclic Alternating Pattern of 

C. Lopes and S. Tufik, "Visual 
rn (CAP) scoring: Inter-rater 
ol. 64, 2006.  

1494


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

