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Abstract—Falls are a prominent problem facing older adults
and a common cause of hospitalized injuries. Accurate falls-
risk assessment and classification of falls-risk levels will provide
useful information for the prevention of future falls. This
study presents a triaxial accelerometer (TA) based two-class
classifier, which discriminates between multiple fallers and non-
multiple fallers, using a directed-routine (DR) movement test.
One-hundred-and-twenty-six features were extracted from the
accelerometry signals, recorded during the DR tests using a
waist mounted TA, from 68 subjects. A linear multiple regression
model was employed to map a subset of these features to an
estimate of the number of previous falls experienced in the
preceding twelve months. A simple threshold is applied to this
estimated number of falls to create a basic linear discriminant
classifier to separate multiple from non-multiple fallers. The
system attained an accuracy of 71% in classifying the exact
number of falls experienced in the last 12 months and 97% in
identifying multiple fallers.

I. INTRODUCTION

Falls are a prevalent issue confronting many older adults
in developed countries, especially those over 65 years of age.
Falls can cause serious injury requiring hospitalization. Clini-
cal research has shown that a high falls-risk is a consequence
of many factors, some of which include: body balance; vision;
reaction time; proprioception; and lower limb strength [1]. Of
course, there are other extrinsic factors related to the subject’s
environment which are more difficult to quantify. An accurate
falls-risk assessment and classification of falls-risk levels
would provide useful information relating to these intrinsic
falls-risk factors and help with the prevention of future falls
through the use of appropriate intervention strategies.

Accelerometers, which can be used to measure body move-
ment when a person performs daily activities, have been
widely used to identify falls events or near falls and stumbles
[2]–[4]. Recent research has also focused on utilizing this
technology for falls-risk assessment, to provide an accurate
prediction of falls events in the near future [5]–[7]. The value
of using a wearable sensor system to estimate falls risk is that
it can be deployed unsupervised in the home environment,
to either enable the screening of larger populations, or to
provide long-term monitoring, which might allow the efficacy
of falls-risk reduction interventions to be assessed remotely
and frequently.

In a study by Narayanan et al., a falls-risk estimation
model was developed using 54 features extracted from a
directed-routine (DR) scripted sequence, which consists of
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a timed up-and-go test (TUGT), a sit-to-stand movement
with five repetitions (STS5), and an alternate step test (AST)
movement. These features are mapped to a clinical falls-
risk score (physiological profile assessment (PPA) [8]) with
a reasonable correlation of 0.81 [5]. Further research by
our group has made substantial improvements to this result,
through the addition of 72 frequency domain features to the
existing 54 used by Narayanan et al., resulting in a correlation
of 0.99 with the PPA gold standard [7]. This result is obtained
using fully automated signal analysis, developed by Redmond
et al. [9], which improves on the manual signal segmentation
used by Narayanan et al..

Rather than mapping to the PPA score, which is an inter-
mediate estimate of falls-risk, this study aims to estimate the
number of falls that a subject suffered over the previous 12
months. While this is not a prospective study, whereby the
number of falls in the coming twelve month is predicted, it
serves as a proof of principle for the feasibility of such a
prediction scheme. The same methodology was employed as
was previously used in [5] and [7] to create a simple two-
class classifier model to distinguish between multiple fallers
and non-multiple fallers (which means one or no falls). All
126 time and frequency domain features extracted from the
DR are used in a linear model to map to the target falls
history (number of falls in the last 12 months). Applying
a threshold to the output of this linear model creates a
simple linear discriminant classifier. The performance of the
automatic segmentation algorithm developed by Redmond et
al. is also assessed and compared to a manual segmentation
method [9]. The performance of each DR subtest (TUGT,
AST and STS5) is also analyzed separately, to investigate
their relative importance in the classification scheme.

II. METHODS

A. Instrumentation and subjects

A triaxial accelerometer (TA) was attached to the waist at
the anterior iliac crest to measure body movement during the
DR. The sampling frequency was 40 Hz for each of the three
channels. The sensitivity was ± 1.5 G (where G=9.81 m/s/s).
The accelerometry data were streamed live to a PC using a
class 1 Bluetooth radio.

Sixty-eight subjects (including 47 female, 21 male) aged
from 72 to 91 years, were randomly recruited from a falls
clinic at the Prince of Wales Medical Research Institute,
Sydney, Australia. A clinical falls-risk assessment (PPA) was
performed on each subject prior to their execution of the DR
tests. This is the same dataset used by Narayanan et al. [5].
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Each of the subjects was already involved, for varying
durations, in an independent 12 month prospective falls-risk
trial, during which a comprehensive falls event diary was
documented; the resulting falls event counts used in this paper
correspond to the total for the entire 12 month period of that
parallel study.

B. Directed routine

The DR is a set of predefined movement tests which are
easily performed in unsupervised settings. Three different
tests are included in the DR; namely, the TUGT, AST and
STS5, which have been shown to be significantly correlated
to falls-risk factors [1], [5], [7], [10].

The TUGT test involves standing up from a chair, walking
straight for 3 m, turning around, walking back to the chair
and sitting down. The AST test involves placing one foot on
a raised platform (19 cm high and 40 cm wide) and then back
down on the floor, then placing the other foot on and quickly
off the platform, repeating this for four times, as quickly as
possible. The STS5 consists of five sit-to-stand movements
with arms folded in front of the chest, being performed as
fast as possible.

C. Signal segmentation

Two segmentation methods were used in this study. The
manual segmentation is identical to that used by Narayanan
et al., whereby an observer presses a keyboard to denote the
occurrence of fiducial events during the DR assessment [5].
Automatic segmentation algorithms, developed by Redmond
et al., are also employed to investigate the feasibility of a
completely automated and unsupervised assessment [9].

Key markers in the three tests were defined as follows:
1) TUGT markers: The time when the subjects start and

finish the TUGT test, tTUGT
start , tTUGT

end ; the time when they
have stood up, tTUGT

stand ; the time when they have walked 3 m,
tTUGT
3m ; the time when they have turned around, tTUGT

turn ; the
time when they have walked back to the chair, tTUGT

chair .
2) AST markers: The time when the subjects start to lift the

leading foot (assumed to be the left foot) from the ground,
tAST
l1 ; the time when they start to raise the trailing (right)

foot from the ground, tAST
r1 ; the same time markers in the

following three repetition, tAST
l2 , tAST

r2 , tAST
l3 , tAST

r3 , tAST
l4 ,

tAST
r4 ; and the time when they finish the AST test, tAST

end .
3) STS5 markers: The time when the subjects start each

sit-to-stand cycle, tSTS5
i (i ∈ {1, ..., 5}); the time when they

finish the last cycle, tSTS5
end .

D. Feature extraction

One-hundred-and-twenty-six features were generated either
from the accelerometry signals of the DR tests (123 features),
or from the physiological data (3 features), which might be
related to one’s risk of falling. Of the 123 features extracted
from the accelerometry signals, 51 were temporal and energy-
related features, and 72 were spectral features, which were
extracted from the frequency spectra of all three directions
(x, y and z−axis) and an acceleration magnitude signal [7].

The estimated gravitational acceleration component was
estimated by low-pass filtering at 0.1 Hz and was subtracted
from the original signals to generate the body acceleration
(BA) components, before feature extraction proceeds. Table I
shows a complete list of features. An overall description of
the features follows below.

Temporal features include: the total duration of each whole
test, {1, 34, 84}; the duration between two successive mark-
ers, marked as {2, ..., 6, 35, ..., 42, 85, ..., 89}; the estimated
stepping frequency, {7}; the SD of successive time differences
in repeating movements and the normalized SD of the same
value, {43, 44, 90, 91}; dissimilarity measures between cycles
of the AST and STS5, {45, 46, 47, 92}. Refer to Narayanan
et al. for more details on the calculation of these features [5].

Energy-related features include: the root-mean-square
(RMS) of the signal vector magnitude (SVM) for the entire
test duration, {8, 48, 93}, the signal magnitude area (SMA)
over various time intervals, and additional analysis of the
SMA between different cycles, {9, 49, ..., 59, 94, ..., 99}. The
SVM signal was obtained from the square root of the sum of
the squared value of xBA[i], yBA[i], and zBA[i] (xBA, yBA,
and zBA are the BA components of the acceleration signals
in anteroposterior, mediolateral and vertical directions). The
SMA features were calculated as the sum of the absolute
value of xBA, yBA, and zBA, over the duration of the targeted
segment of the test.

Spectral features were extracted from the spectra of four
signals: xBA, yBA, zBA and the SVM signal, for each DR
test. A discrete Fourier transform was performed to calcu-
late the spectrum of each signal, Fx(jω), Fy(jω), Fz(jω),
FSVM (jω). A search for the fundamental frequency ω1 was
performed on the spectra (ω1 > 2π(0.15) rad/s), selecting
the value which maximized the sum of the magnitude spec-
trum at the first six harmonics. To quantify the periodicity
characteristic of each signal, the sum of the magnitude of
the first six harmonics were divided by the sum of the
magnitude of the remaining area between these harmonic
peaks, to give features {10, ..., 13, 60, ..., 63, 100, ..., 103}; the
ratio of the magnitude under each harmonic to the sum of the
magnitude spectrum at the first six harmonics and the ratio
of the magnitude under the even harmonics to the magnitude
under the odd harmonics, was also calculated to give features
{14, ..., 33, 64, ..., 83, 104, ..., 123}.

In addition to the features extracted from the TA signals,
three non-TA based physiological features were considered;
namely, age, gender (binarized), and reaction time (RT) z-
score (obtained from the PPA assessment) to give features
{124, 125, 126}.

E. Falls prediction model and two-class classifier

A linear multiple regression model is used to estimate
the number of previous falls experienced by each subject.
Features extracted from the TA signals (with the possible
addition of age, sex and RT z-score) are weighted and mapped
to the target value: the number of falls in the last 12 months.
The ith subject has a row vector, xTi , which consists of a
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TABLE I
SUMMARY OF THE 126 CANDIDATE FEATURES WHICH MAY CORRELATE

WITH FALLS-RISK.
Feature no. Feature name
1 - 6 TUGT total time duration and time intervals between each two consecutive markers
7 TUGT fstep
8, 9 TUGT RMS of high-pass filtered SVM and TUGT SMA
10 - 13 TUGT first 6 harm. freq. ratio of SVM, xBA, yBA, zBA

14 - 17 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
19 - 22 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of xBA

24 - 27 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

29 - 32 TUGT fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

18, 23, 28, 33 TUGT even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

34 - 42 AST total time duration and time intervals between each two consecutive markers
43, 44 Standard deviation and normalized SD of AST time differences
45, 46 AST dissimilarity of leading foot steps and trailing foot steps
47 AST dissimilarity of leading/trailing step pairs
48, 49 AST RMS of high-pass filtered SVM and AST SMA
50, 51 AST SMA of weakest cycle and strongest cycle
52 AST max. - min. cycle SMA
53 AST SMA ratio between strongest and weakest cycle
54 AST SMA variance per cycle
55, 56 AST SMA of leading foot cycles and lagging foot cycles
57 AST SMA ratio of leading/trailing leg energy
58, 59 AST SMA variance for leading foot cycles and trailing foot cycles
60 - 63 AST first 5 harm. freq. ratio of the SVM, xBA, yBA, zBA

64 - 67 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
69 - 72 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of xBA

74 - 77 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

79 - 82 AST fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

68, 73, 78, 83 AST even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

84 - 89 STS5 total time duration and time intervals between each two consecutive markers
90, 91 Standard deviation and normalized SD of STS5 time differences
92 STS5 dissimilarity of sit-to-stand cycles
93, 94 STS5 RMS of high-pass filtered SVM and STS5 SMA
95, 96 STS5 SMA of the weakest and the strongest cycle
97 STS5 max. - min. cycle SMA
98 STS5 SMA ratio between strongest and weakest cycles
99 STS5 SMA variance per cycle
100 - 103 STS5 first 4 harmonics frequency ratio of SVM, xBA, yBA, zBA

104 - 107 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of SVM
109 - 112 STS5 fund., 2nd, 3th, 4th harm. magnitude ratio of xBA

114 - 117 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of yBA

119 - 122 STS5 fund., 2nd, 3rd, 4th harm. magnitude ratio of zBA

108, 113, 118, 123 STS5 even to odd harm. magnitude ratio of SVM, xBA, yBA, zBA

124 - 126 Age, Sex, RT z-score

selected subset of features from the feature list. A matrix,
X, contains the N row vectors, xT

i , for i ∈ {1, ..., N}, from
N ≤ 68 subjects included in the model training set. The
N estimated number of previous falls, f̂, are calculated as
f̂ = Xw, where w is a column vector which contains weights
assigned to each feature. The vector w is calculated so as
to minimize the root-mean-squared-error (RMSE) between
the estimated falls-risk values, contained in the vector f̂,
and the number of previous falls, contained in the vector f.
The closed-form solution is given by w = X+f, where X+

represents the pseudo-inverse of the matrix X. This linear
model produces a non-integer estimate of an integer number
of falls, f̂ . To estimate the number of falls, all estimates are
rounded to their nearest integer, with all values less than zero
rounded up to zero.

Two classes of fallers were considered. Subjects suffering
two or more falls were defined as multiple fallers, and others
were non-multiple fallers. Before rounding to an integer
number of falls, a threshold of 1.5 was applied to f̂ to
categorize the subjects into two groups. The accuracy of this
classifier was calculated as the ratio of the number of subjects
being correctly classified as a fraction of the total number of
subjects.

F. Cross validation and feature selection

Leave-one-out cross validation was employed in the classi-
fier validation. Each subject was used for testing once, while
the remaining data were used to train the model. A sequential
forward floating search (SFFS) algorithm was used to select
the optimal subset of features from the candidate feature pool

[11]. The selected feature set will give the smallest RMSE
value between the true falls history and the estimated falls
event count, as estimated using cross validation. Furthermore,
the predictive power of features from each DR subtest are
analyzed in isolation, with or without the addition of the three
physiological features.

III. RESULTS

Table II shows the performance of the linear model in esti-
mating previous falls history, using either manual or automatic
signal segmentation before feature extraction. The perfor-
mance when inclusion or exclusion of the three physiological
features is also listed. The near optimal subset of selected
features is listed in the order that they were recruited by the
SFFS algorithm. The accuracies of the two-class classifier and
the accuracies in estimating the number of previous falls are
also listed in Table II.

Table III shows the confusion matrix obtained when the
estimated number of falls are rounded to the nearest integer,
using manual segmentation and using all candidate TA-based
features. In addition, Table IV summarizes the confusion ma-
trix for the two-class classifier when discriminating between
non-multiple fallers and multiple fallers. A scatter plot of the
estimated number of falls (before rounding) against the true
falls history record is also shown in Fig. 1.

IV. DISCUSSION AND CONCLUSION

A two-class classifier has been generated using a linear
multiple regression model, which uses features derived from
accelerometry signals acquired during the execution of a DR
assessment. The number of falls occurring in the previous
12-month period has been retrospectively estimated for 68
elderly subjects and compared to a gold standard.

Table II shows that when using all 126 candidate features,
the model has an excellent accuracy in classification between
non-multiple fallers and multiple fallers when using manual
signal segmentation (97%) and automatic segmentation al-
gorithms (90%). It should be noted the groups are heavily
unbalanced with only 9 of the 68 subjects falling into the
multiple faller category.

TABLE II
PERFORMANCE MEASURES FOR THE TWO-CLASS CLASSIFIER AND THE

THE CLASSIFIER IN ESTIMATING PREVIOUS FALLS HISTORY.
Segmentation
method

Candidate features Selected features Accuracy
of the
two-class
classifier

Accuracy in
estimating
the number
of falls

Manual TUGT, AST & STS5
features*

{120, 18, 89, 101, 109, 57,
39, 123, 40, 23, 15, 61, 112,
48, 69, 113, 31, 60, 45, 97,
53, 68, 4, 56, 50}

97% 71%

Manual TUGT features* {18, 27, 14, 24, 25} 87% 44%
Manual AST features {67, 59, 55, 47, 62, 36, 38,

48, 83}
91% 47%

Manual AST & non-TA fea-
tures

{67, 59, 55, 47, 62, 124, 36,
39, 38}

90% 47%

Manual STS5 features {120, 101, 109, 119, 114} 87% 50%
Manual STS5 & non-TA fea-

tures
{120, 101, 109, 119, 114,
124, 112, 118, 103}

85% 44%

Automatic TUGT, AST & STS5
features*

{120, 18, 36, 39, 55, 110,
119, 81, 89, 65, 80, 62}

90% 58%

Automatic TUGT features* {22, 3, 1, 21} 85% 47%
Automatic AST features* {55, 59, 72} 87% 44%
Automatic STS5 features* {120, 104, 102, 88, 119,

113, 87}
84% 51%

*Performance and the selected features remained the same when supplementing with non-TA features.
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TABLE III
CONFUSION MATRIX OF ESTIMATED NUMBER OF FALLS

(ROUNDED) AGAINST TRUE PREVIOUS FALLS HISTORY, USING
ALL TA-BASED FEATURES AND MANUAL SEGMENTATION.

ACCURACY: 71%.
True previous falls history

0 1 2 3 4 All

E
st

im
at

ed
fa

lls

0 35 4 0 0 0 39
1 11 8 1 0 0 20
2 0 1 4 2 0 7
3 0 0 0 1 1 2
4 0 0 0 0 0 0

All 46 13 5 3 1 68

TABLE IV
CONFUSION MATRIX OF THE TWO-CLASS CLASSIFIER (NON-MULTIPLE

FALLERS VS. MULTIPLE FALLERS), USING ALL TA-BASED FEATURES AND
MANUAL SEGMENTATION

True previous falls history

Non-multiple Multiple All

E
st

im
at

ed Non-multiple 58 1 59

Multiple 1 8 9

All 59 9 68

While manual segmentation proved superior for this task,
the selected near optimal feature subsets show some con-
sistency between the two segmentation methods. The first
two selected features {120, 18} (from 126 candidate features)
were the same under both segmentation schemes. These two
features {120, 18} are the second harmonic magnitude ratio in
the vertical direction of STS5, and the even to odd harmonic
magnitude ratio of the SVM signal in TUGT, respectively.

The performance when using only features from one DR
subtest, with or without non-TA features, are also shown in
Table II. It is seen that each of the DR subtests give similar
accuracies for both classification tasks, with the two class
problem showing accuracies in the range of 84% to 91%.

A careful examination of the selected features reveals that
the spectral features appear most often across all subsets.
The first selected feature was a spectral feature in nearly all
cases; except when using only the AST subtest with automatic
segmentation, where feature 55 was chosen first and is the
SMA of leading foot cycles.
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Fig. 1. Scatter plot of the estimated number of falls against true previous
falls history.

It is also interesting to note that in most cases, when non-
TA features were included in the candidate features, none of
the three physiological features were selected, except when
they were with AST features or with STS5 features separately
(both under manual segmentation). In these cases, the only
physiological feature selected was age, with the implication
that more elderly subjects would have higher falls-risk levels
than younger subjects, which is unsurprising. Interestingly, the
RT z-score, which is usually considered to be more indicative
of falls-risk in the elderly, was never selected from any feature
set which was considered.

A major limitation of this study lies in the fact that it is
a retrospective analysis which attempts to estimate previous
falls history. It should not be seen as an accurate prediction
of future falls, as the collected data may belie intervention
(which occurred prior to subjects performing the DR), or
previous falls-related injuries or fears. However, it serves as
a strong incentive to perform a prospective study to examine
if this prediction accuracy is repeated when predicting future
falls.
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