
  

 

Abstract—Objective longitudinal monitoring of symptoms 

related motor fluctuations can provide valuable information for 

the clinical management of patients with Parkinson’s disease. 

Current methods for long-term monitoring of motor 

fluctuations, such as patient diaries, are ineffective due to their 

time consuming and subjective nature. Researchers have shown 

that wearable sensors such as accelerometers can be used to 

gather objective information about a patient’s motor 

symptoms. In this paper, we present preliminary results from 

our analysis on wearable sensor data gathered during 

longitudinal monitoring of 5 patients with PD.  Our results 

indicate that it is possible to track longitudinal changes in 

motor symptoms by training a regression model based on 

Random Forests.  

 

I. INTRODUCTION 

ARKINSON’S disease (PD) is a common movement 

disorder, affecting about 3% of the population over the 

age of 65 years and more than 500,000 US residents. The 

characteristic motor features are development of rest tremor, 

bradykinesia, rigidity, and impairment of postural balance. 

Current therapy is based on augmentation or replacement of 

dopamine, using the biosynthetic precursor levodopa or 

drugs that activate dopamine receptors. These therapies for 

PD are often successful for limited period of time but most 

patients eventually develop motor complications, including 

abrupt loss of efficacy at the end of each drug dosing 

interval, and involuntary and sometimes violent writhing 

movements [1, 2]. Monitoring these motor complications 
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can assist adjustment of drug dosage or call for change of 

treatment.  

Currently available tools for monitoring motor 

fluctuations (figure 1) are quite limited. In clinical practice, 

information about motor fluctuations is usually obtained by 

asking the patient to recall the number of hours of ON and 

OFF time they have experienced in the recent past. “ON 

time” is used to refer to periods when medications are 

effective in attenuating symptoms. “OFF time” is used to 

refer to periods when symptoms are present. This kind of 

self-report is subject to both perceptual bias and recall bias. 

A reliable quantitative tool for long term monitoring of 

motor complications in PD patients would be valuable both 

for routine clinical care of patients as well as for trials of 

novel therapies. 

Advances in wearable technology [3] make it possible to 

develop monitoring systems to capture movement patterns 

associated with motor fluctuations. Recent work has shown 

initial success on both long term data collection with 

wearable sensors [4] and quantitative classification of PD 

symptom severity using data gathered from wearable sensors 

[5-7]. Building on these foundations, we are developing an 

integrated remote monitoring platform that extends sensor 

based monitoring into the home environment. Such a 

platform will eliminate the need for frequent hospital visits 

by PD patients for supervised data collection sessions and 

therefore reduce the cost and simplify logistics for PD 

monitoring.  

We have designed a web-based remote motion monitoring 

system called MercuryLive [8], which allows clinicians to 

easily interact with patients who are at home, record 

annotated live motion data, and configure the motion 

monitoring parameters remotely. We are currently deploying 

this remote monitoring system in patients’ home to gather 

wearable sensor data. The focus of our current study is on 

the longitudinal aspect of monitoring motor symptoms. 

Hence, we are working towards the development of 

techniques to extract clinically meaningful information from 
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Fig. 1 Parkinson’s disease motor fluctuation cycle. 
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sensor data and track changes in symptom severity as they 

our over a period of several months. In this paper, we 

present preliminary results on the estimation of clinical 

scores for two tasks from sensor data recorded longitudinally 

from 5 patients over a period of three days. Our main goal is 

to estimate clinical scores for the tests conducted on the last 

day of monitoring using data gathered during pervious 

monitoring sessions. We optimize the feature space by 

performing feature selection and implement a Random 

Forest regression based method for estimating the clinical 

scores. Preliminary analysis shows that it is feasible to 

monitor longitudinal changes in the severity of PD motor 

symptoms. 

II. METHODS 

A. Data Collection 

 

Fourteen individuals with moderate to advanced PD have 

been recruited in the study so far. In this paper, we will 

present results on data gathered from 5 subjects who have 

completed all aspects of the study. A schematic of the data 

collection process is shown in figure 2. Subjects undergo 

motor assessments on three separate days. First two days of 

monitoring were performed in the clinical setting while the 

third day of monitoring was performed in the home setting 

using a web-based remote monitoring application called 

MercuryLive [8]. The clinical user-interface of MercuryLive 

is shown in figure 3. MercuryLive contains three tiers: a data 

collection engine that relies upon the wearable sensors, web 

services for live streaming and storage of sensor data, and a 

user interface for two-way communication between patient 

and clinician. 

Four testing sessions are performed on each day of 

monitoring. During each of these tests, subjects perform a 

set of tasks from the Unified Parkinson’s Disease Rating 

Scale (UPDRS) as well as activities of daily living. Each 

task is performed for approximately 30s. The UPDRS motor 

tasks included finger-to-nose (reaching and touching a 

target), index finger and thumb tapping, repeated hand 

movements (opening and closing of hand), heel tapping, 

quite sitting and alternating hand movements (repeated 

pronation/supination with an outstretched arm). Subjects are 

allowed to rest for approximately 20mins between two tests.  

As shown in figure 4, subjects were instrumented with tri-

axial accelerometer sensors based on the SHIMMER 

platform [9]. Accelerometers were placed bilaterally at the 

midpoint of forearm, the midpoint of upper arm, on the 

shank approximately 10cm about the ankle, and on the thigh 

approximately 10cm above the knee. In addition, video 

recordings were made during each testing session for later 

clinical assessments performed by an expert clinician. Using 

the UPDRS the clinicians provide us a score from 0-4 for 

each task performed by the subject during every monitoring 

session. A score of 0 indicates the absence of a symptom 

while a score of 4 indicates a high level of symptom 

severity.  

B. Feature Extraction 

Raw tri-axial accelerometer data for each task were high-

pass filtered with a cutoff frequency of 0.5Hz to remove 

gross changes in the orientation of body segments. The time 

series were further low-pass filtered with a cutoff frequency 

of 5Hz. All filters were implemented as IIR filters based on 

an elliptic design. Features were extracted from the each 

accelerometer time series (X, Y & Z axis) using a 5s 

rectangular windows randomly positioned throughout the 

 
 

Fig. 2 Schematic of the data collection process. Data collection was 

performed for day 1 and day 2 in the clinic. MercuryLive remote 

monitoring system was used for day 3 data collection in the home. 
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Fig 3. Screen shot of the MercuryLive web-application 

 
Fig 4. Schematic representation of the sensor setup 
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recordings performed during performance of each motor 

task. Features were extracted from 30 such window 

segments (i.e. epochs) for each motor tasks. In this paper we 

focus on the heal tapping and alternating hand movement 

tasks. We extract features that capture qualitative 

characteristics of movement such as intensity, modulation, 

frequency, periodicity, and smoothness of movement. 

Intensity was measured as the root mean- square value of 

linearly detrended accelerometer signal. The dynamic 

characteristics of the tasks were represented by the 

modulation of each accelerometer sensor output and 

measured as the range of amplitude of each channel. Two 

frequency-based features were estimated. The dominant 

frequency component was used to capture the rate of 

movement; the algorithm identified such value in the range 

between 0.5 and 5Hz as the peak of the Fast Fourier 

Transform output. Range of auto-covariance was derived as 

a measure of signal modulation. The ratio of energy 

associated with the dominant frequency component to the 

total energy in the range 0.5 to 5Hz was utilized to measure 

periodicity. Signal entropy [10] estimates were derived as a 

measure of signal complexity. A total of 6 features are 

extracted per accelerometer axis (X, Y & Z) making a total 

of 18 features per sensor node and 144 features in total. 

C. Feature Selection 

During the feature extraction process we extract a large 

number of features from each tri-axial accelerometer sensor. 

Hence, to escape the curse of dimensionality we perform 

feature selection. Before performing feature selection, we 

filter the feature space by discarding all the features that 

were derived from sensors not on the body segments 

involved in the task. For example, for alternating hand 

movement with right hand (AHR) we discard all the features 

except the ones derived from the sensors located on the right 

forearm and right upper arm.  

Feature selection was implemented as a two step process. 

First, using the ReliefF [11] algorithm in conjunction with a 

ranker search method, we derive the order of importance of 

the features. The ReliefF algorithm iterates through every 

instance updating the weights assigned to a feature based on 

its ability to correctly classify the instance. To calculate the 

weights, for each instance, it searches for K nearest 

neighbors from the same class, and K nearest neighbors 

from each of the other classes. The number of nearest 

neighbors K was set to 10 as suggested by Robnik-Sikonja 

and Kononenko [11]. The ReliefF algorithm is 

computationally simple and robust. We used the WEKA [12] 

implementation of the algorithm. 

The second step is to select a subset of the ranked features. 

To do this we use the Davies-Bouldin (DB) cluster validity 

index [13] as an objective measure of the clustering quality. 

The DB index measures how well-separated clusters 

belonging to different classes are as well as the spread 

within each cluster. It is calculated for each pair of clusters 

as a ratio of within-class scatter and between-class 

separation. A low value of the DB index indicates tight well-

separated clusters and vice versa. Using the ranked set of 

features from the ReliefF step, we calculate the DB index by 

incrementally adding one feature at a time in the order of 

ranking. A feature subset is selected when we see no 

significant improvement or an increase in the DB index.  

D. Clinical Score Estimation 

To estimate the UPDRS clinical scores we implemented a 

regression Random Forest (RF) based on the R 

implementation by Liaw et al [14]. RFs, introduced by 

Breiman [15],  are ensembles of weakly correlated decision 

trees that generate an output as an aggregate result of 

predictions by individual trees. RFs introduce an additional 

level of randomness to bagging by training individual trees 

using a randomly selected subset of features. They have 

been shown to outperform several other techniques while 

being robust against overfitting [15].  

III. RESULTS 

In this paper, we focus our analysis on two specific 

UPDRS tasks 1) heel tapping with left (LAH) and right 

(LAR) leg and 2) alternating hand movement 

(pronation/supination) with left (AHL) and right (AHR) 

hand. Our goal is to derive reliable estimates of the clinical 

scores for tests performed during day 3 of the monitoring. 

Figure 5 shows a scatter plot of the combined data from all 

the subjects and all days of monitoring for two of the top 

ranked features provided by the ReliefF algorithm for the 

AHL task. We can observe a clear trend from a score of 1 to 

a score of 4. The overlaps between clusters are expected as 

the level of severity, in reality, is continuous unlike the 

UPDRS scoring system, which can only provide discrete 

scores from 0 to 4. Also, there can be slight variations in the 

performance of motor tasks from subject to subject. An 

attractive aspect of using wearable sensors is the possibility 

of deriving more continuous estimates for changes in 

severity and thus tracking clinical scores with a much higher 

resolution that currently possible. 

 
Fig. 5 Scatter plot using two top ranked features for the Alternation 
Hand Movement task with left hand (AHL). Signal entropy derived 

from the X-axis on the left upper arm (LUA EntropyX) is on the 

abscissa and signal entropy derived from Y-axis on the left forearm 
(LFA EntropyY) is on the ordinate. The scatter plot is color labeled 

by clinical score. 
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Figure 6 shows the aggregate DB index for all the subjects 

and all the tasks. As we combine data from day 1 with data 

from day 2 and day 3 we see an increase in DB index which 

indicates that the quality of clustering has deteriorated. This 

increase in DB index can be attributed to the differences in 

sensor placement, more levels of observed severity (i.e. 

more clusters) and change in the way the task was performed 

by the subject. As we increase the number of top ranked 

features, the DB index decreases significantly for the 

combined datasets. However, we observe no significant 

increase beyond 5 top ranked features.  

 

Figure 7 shows the root mean square (RMS) error in the 

estimation of the UPDRS score for data gathered during 

testing sessions performed on day 3. The estimates were 

derived using a regression Random Forest with 20 trees. 

Overall, the average RMS error is around 0.4. We observed 

a larger variability in the estimation performance for the 

LAR (0.39 + 0.19) and LAL (0.37 + 0.17) tasks. This can be 

attributed to the fact that the leg agility task is not as well 

defined as the alternating hand movement tasks and hence is 

not performed consistently between and within subjects.  

IV. DISCUSSION 

Preliminary results indicate that longitudinal tracking of 

severity of motor symptom in PD using wearable sensors is 

feasible. In this paper, we showed that we were able to track 

UPDRS scores for two tasks by using a regression Random 

Forest to within 0.5 points on a scale of 0-4. We observed 

that the estimation of scores for alternating hand movement 

task (AHL/AHR) was more accurate than leg agility task 

(LAL/LAR). This can be attributed to the fact that 

AHL/AHR task is more systematic and well defined. In the 

future, we aim to expand our analysis to include all the 

UPDRS tasks and a larger set of subjects from our ongoing 

study. We believe that longitudinal tracking of motor 

symptoms in the home setting a challenging task and will 

require creative data processing techniques to account for 

the uncontrolled nature of the home environment.  
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Fig. 6 DB Index as a function of the number of top ranked features 

(provided by ReliefF) included in the dataset. Features are 
incrementally added, one at a time, in the decreasing order of 

ranking. 
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Fig. 7 Root mean square (RMS) error for estimation of UPDRS clinical 
scores. 
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