
  

  

 
Abstract—This paper outlines the design and development of 

a robotic exoskeleton based rehabilitation system. A portable 
direct-driven optimized hand exoskeleton system has been 
proposed. The optimization procedure primarily based on 
matching the exoskeleton and finger workspaces guided the 
system design. The selection of actuators for the proposed 
system has emerged as a result of experiments with users of 
different hand sizes. Using commercial sensors, various hand 
parameters, e.g. maximum and average force levels have been 
measured. The results of these experiments have been mapped 
directly to the mechanical design of the system. An under-
actuated optimum mechanism has been analysed followed by 
the design and realization of the first prototype. The system 
provides both position and force feedback sensory information 
which can improve the outcomes of a professional 
rehabilitation exercise. 

I. INTRODUCTION 
ANDS are central entity for the maintenance of 
independent living. Hand exoskeleton systems enhance 

the human strength by extending the sensing and 
manipulation capabilities of a user in a real and/or virtual 
environment. In rehabilitation, the primary aim of such 
systems is to assist physiotherapists in performing the 
therapies after hand injuries or strokes, thereby partially or 
even completely replacing the classical manual procedures. 
Construction of assistive systems for the benefit of 
humankind has always fascinated the research community. 
The scientific literature reports many exoskeleton-based 
hand rehabilitation systems. 
 Scientists at HongKong Polytechnic University have 
conceived a complete five-fingered hand with 2 DOF per 
finger employing Virtual Centre of Rotation (VCR) 
mechanism [1]. An exoskeleton system having 1 DOF has 
been presented by KAIST researchers considering Activities 
of Daily Living (ADL) training for stroke patients [2]. The 
main objective was to realize several types of grasp 
including cylindrical, lateral and pinch. A 4-bar linkage has 
been designed to imitate the finger tip path in grasping 
motion while a cable mechanism drives the movement of the 
thumb. Another exoskeleton aimed to restore dexterity of 
paralyzed hands has been developed at CMU [3]. The 
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exoskeleton controlled by ElectroMyoGraphy (EMG) 
signals has two actuators controlling the index finger flexion 
that can be used to perform a pinching motion against a 
fixed thumb. Wang et al. presented a ground-based finger 
exoskeleton having 4 DOF [4]. The system is actuated by 
four actuators placed at a distance from the hand to reduce 
loading. The exoskeleton finger is comprised of three 
phalanges corresponding to the human hand anatomy. For 
each finger joint, two cables have been used to transmit 
force and motion from the actuator to the exoskeleton. 
Another novel hand exoskeleton exerciser comprised of four 
fingers having 7 active DOF has been proposed by 
researchers at Salford University [5]. The system has been 
intended to combine dexterity with a good Range Of Motion 
(ROM). The actuators reside on ground and the bi-
directional forces are transmitted by low friction tendons. 
The device has been integrated within a Virtual Reality (VR) 
based hand therapy system, thus permitting a clinician to 
customise and perform hand exercises and finger motion 
evaluation tests. Another tendon-driven hand exoskeleton 
having 4 DOF per finger has been conceived by Wege et al. 
[6]. The system is capable of exerting bidirectional forces 
using a single DC motor. Researchers at SSSA, Italy have 
realized a novel hand exoskeleton system [7] intended to 
simplify the exoskeleton complexity related to its structure, 
mechanism and actuation while still providing full hand 
mobility. The natural ROM has been accomplished by 
keeping the number of exoskeleton’s DOF similar to that of 
a natural hand while simplicity has been achieved by 
proposing a novel mechanical design. Y. Fu et al. have 
presented a passive hand rehabilitation system [8] actuated 
by two motors that can exert bidirectional forces on finger 
phalanges during complete flexion and extension. The 
developed Continuous Passive Machine (CPM) has 4 
DOF/finger and uses tendons for force transmission.  
 The detailed review of the existing systems has revealed 
that there is no existing exoskeleton based rehabilitation 
device that encompasses following features: 

- Direct-driven 
- Optimized link structure 
- Human hand compatible 
- Full Range of Motion (ROM) 
- Light mass & low volume 
- Portable 
- Support for variable hand size 
- Possibility to accommodate up to 5 fingers 
- Provision of bi-directional forces 
- Palm free  
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II. SYSTEM MECHANISM 
A hand exoskeleton should provide the desired 

functionality with adequate ergonomics. In terms of 
mechatronic implementation, this can be achieved by 
appropriate choice of link lengths, number of DOF, selection 
of actuators and sensors, etc. Obviously, this cannot be 
accomplished by solutions employing a large number of 
actuation units trying to power most of the finger phalanges. 
This will certainly result in uncomfortable and cumbersome 
devices not suitable for repetitive periods of operations. 
 An earlier developed Hand EXOskeleon SYStem 
(HEXOSYS)-I can provide force levels (45N) beyond any 
existing system [9]. The experiences with HEXOSYS-I 
enabled us to design a new light mass, less volumetric hand 
exoskeleton that is more ergonomic thus yielding better 
performance in terms of grasping and manipulation. 
Moreover, the newly developed exoskeleton can 
accommodate up to 5 fingers and supports adjustment of 
various hand sizes. While both the proposed hand 
exoskeleton systems are direct-driven and portable with the 
ability to exert bi-directional forces on the finger phalanges, 
their mechanisms, actuation systems, optimization criteria 
and physical features are entirely different. 
 The design concept of HEXOSYS-II finger is presented in 
Figure 1. With an underactuated mechanism, it is a two link 
serial Revolute Revolute (RR) manipulator which is attached 
to the finger at a single point. The system is powered by a 
single actuator residing at the base of exoskeleton’s 
proximal joint. The finger prototype is shown in Figure 2. 
  

 
Fig. 1.  HEXOSYS-II design concept 

 
 

 
Fig. 2. HEXOSYS-II finger prototype 

 

III. SYSTEM  OPTIMIZATION 
The functional behavior of an exoskeleton in the 

WorkSpace (WS) strongly depends on the lengths and shape 
of its links. This motivated us to carry a multi-parametric 
optimization procedure that determines the optimized link 
lengths. The optimization criteria primarily include finger-
exoskeleton WS matching in addition to other trivial factors 
like kinematic mapping, worst case collision avoidance, etc. 
For the sake of widening the reachable exoskeleton WS 
without encountering the collision, the first link of length L1 
(see Figure 1) has been split into sub-segments (Figure 3).  
The lengths of these segments are adjustable and are a 
function of finger and hand size. Likewise, the angle 
between the first two sub-segments (θfixed) is also adjustable 
but is fixed for a certain hand/finger. The length of the distal 
link (L2) which serves as a connection link between the 
finger and the end-effector has been set to the minimum 
possible allowed by the mechanical integration (1cm). 

 

 
Fig. 3.  Splitting the first link into three segments resulted in widening of 

the HEXOSYS-II workspace  
 

The inputs to the optimization algorithm are  
   hand size = {small, medium, big} 
   finger = {index, middle, ring, thumb} 
 
While the outputs are 
   lengths = {L1-1, L1-2, L1-3} 
   angle = {θfixed} 
 
The optimization algorithm starts with assuming 

reasonable lengths of the segments. Each set of link lengths 
is then subjected to traverse throughout the finger WS for 
analysis. The finger WS has been determined using the 
Monte Carlo method. Random samples of the finger joint 
angles in the range -10°≤θMCP≥50°, 0°≤ θPIP≥110° determine 
the points throughout the finger WS using 
 
  x ൌ  LଵCθMCP  LଶCሺθMCP   θPIPሻ                     (1)

   y ൌ  LଵSθMCP  LଶSሺθMCP   θPIPሻ                        (2)

  

Where L1f and L2f are the lengths of proximal and middle 
digits of the human finger respectively while C and S refer 
to Cosine and Sine of the corresponding angles respectively. 

The set of segment lengths is analyzed to determine the 
number of points in the finger WS reachable by the 
exoskeleton without collision. For collision detection, the 
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rectangular envelopes surrounding the human finger Centre 
of Mass (CoM) and equidistant points on the exoskeleton 
links have been determined. An exoskeleton link length set 
is considered as collision-free if all the points on the links 
reside outside the rectangular envelopes. The collision-free 
WS is stored for comparison with the next iterated link 
lengths set. When all the segment lengths are iterated, the set 
giving maximum correlation of the finger WS and the 
exoskeleton WS is considered as optimized. Figure 4 
illustrates flow-chart of optimization procedure.  

In case of an index finger of a medium sized hand, the 
optimized segment lengths as found from the algorithm are 
L1-1=8cm, L1-2=2cm, L1-3=2cm with θfixed=55.4°. The 
finger WS and the exoskeleton WS corresponding to these 
optimized link lengths are illustrated in Figure 5. This shows 
that the optimized RR mechanism fully covers the natural 
ROM of a finger. 

 

 
Fig. 4.  Optimization algorithm 

 

 
Fig. 5.  Exoskeleton and finger workspaces 

 

IV. SYSTEM DESIGN REQUIREMENTS 
The HEXOSYS-I was targeted at maximum force 

capabilities of the human hand. In an attempt to reduce the 

system physical dimensions and thus enhancing the 
ergonomics, HEXOSYS-II has been aimed at exerting 
average force levels. These levels measured with various 
devices including force sensors and the load cell can be 
ultimately mapped to lower level requirements such as 
actuation torque. Three healthy subjects each having small, 
medium and big hands participated in the experiments. One 
of the experiments included recording the force levels 
required to accomplish some usual grasping activities. The 
subjects were asked to grasp and manipulate the objects in 
the same fashion as they interact with them in their daily 
lives. The commercial FingerTPS™ Tactile Pressure 
Sensors have been used to measure the force exerted by the 
finger tips. Fig. 6 and 7 show the force profiles of two 
activities in case of Right (Rt.) thumb, index and middle 
digits. Detailed design requirements have been reported in 
[10]. 

 
 
 

 
                    (a)                                     (b)                                   (c) 
Fig. 6. Holding a big object (cup) by a (a) Small (b) Medium (c) Big hand  

   

 
                     (a)                                    (b)                                   (c) 

Fig. 7. Interacting a small object (bank card) by a  
(a) Small (b) Medium (c) Big hand  

                                

V. SYSTEM  DESIGN 
The optimized link lengths and shape presented in Section 

III guided the design of the HEXOSYS-II structural sub-
system while the results of average force measurement 
experiments (Section IV) paved the way to choose actuators 
for the proposed system. 

 The exoskeleton finger consists of an actuator per 
finger together with its accessories, a pair of bevel gears, 
optimized links and sensors. An exploded CAD view of a 
single exoskeleton finger is illustrated in Figure 8. The 
actuator is a DC motor by Portescap (16G88-220P). It can 
provide torque up to 16mNm and has a mass of 37gm 
including the gear, thus making the system light weight. The 
actuator accessories consist of a 2 stage planetary gear-head 
with ratio of 30.2:1 and a Magneto-Resistive (MR) encoder 
with a resolution of 512 pulses per revolution. The use of 
bevel gears, by changing the orientation of motor axis 
permits the extension of exoskeleton fingers. A miter gear 
pair (1:1) from Boston Gear made up of stainless steel has 
been used in every exoskeleton finger.  
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Fig. 8.  HEXOSYS-II finger CAD explod
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Fig. 9.  HEXOSYS-II CAD mode
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