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Abstract— In this paper we present surface electromyo-
graphic (EMG) data collected from 16 channels on five unim-
paired subjects and one transradial amputee performing 12
individual finger movements and a rest class. EMG were
processed using a traditional Time Domain feature-set and
classifiers: a Linear Discriminant Analysis (LDA) a k-Nearest
Neighbors (k-NN) and Support Vector Machine (SVM). Using
continuous datasets we show that it is possible to achieve an
accuracy up to 80% across subjects. Thereafter possibilities
to reduce the numbers of channels physically required, as
well as the number of features have been investigated by
means of a developed Genetic Algorithm (GA) that included
a bonus system to reward eliminated features and channels.
The classification was performed firstly on the full datasets
and in later runs using the GA. The GA demonstrated high
redundancy in the recorded 16 channel data as well as the
insignificance of certain features. Although the GA optimization
yielded to reduce 8 to 11 channels depending on the subject,
such reduction had little to no effect on the classification
accuracies.

Index Terms— Genetic Algorithm (GA), Myoelectric control,
Pattern recognition, Surface electrodes, Upper limb prosthesis

I. INTRODUCTION

The efforts to create a user friendly prosthesis have mainly
been limited by electromechanical means in the past. With
modern multi-fingered prostheses such as the i-Limb by
Touchbionics [1] and the BeBionic hand by RSLSteeper
[2], this no longer is the case and the need for a dexterous
controller is evident. The most technological advanced and
common method employed for prostheses control is the
one based on EMG signals processing; to myo-electrically
control a dexterous prosthesis it is necessary to map EMG
signals corresponding to different muscle contractions to
the different existing degrees of freedom available, using a
suitable control algorithm. Research on dexterous controllers
has been focusing on pattern recognition, as this is the most
promising concept in this field. In the past years several
classifiers and feature-sets have been exploited. Among these
studies only a few investigated the possibility of control-
ling independent finger movements, or hand gestures [3][4]
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[5][6][7], while most considered wrist movements such as
flexion/extension, pronation/supination, abduciont/adduction
and sometimes hand closure/opening (all fingers simultane-
ously). Due to their gross nature, these movements are more
reliably detected, with respect to finger postures or specific
grips, but surely less intuitive if the aim is to control finger
postures or particular grasps. While the final goal of this
work is to enable individual finger movements on the newly
available and next generation of prostheses, in this paper we
present surface EMG data collected from 16 electrodes on
six subjects performing 12 individual finger movements and a
rest class making up thirteen classes in total. Five able-bodied
subjects and one transradial amputee volunteered in the
present experiments. EMG were processed using a traditional
Time Domain feature-set (as suggested by Englehart et al.
[8]) and classifiers; in particular a LDA a k-NN and SVM
were employed and compared. Using continuous datasets
(i.e. non reorganized or manipulated recordings) we show
that it is possible to achieve an excellent accuracy across the
five able-bodied subjects and the amputee (up to 80%).

Since such a system should ultimately be clinically viable,
the number of physical electrodes and processed features
might represent a hindrance toward embedding in an actual
prosthesis. In practice, more complex systems tend to be less
reliable, and calculating features and computing channels is
time consuming. For instance Farrell and Weir [9] showed
that linear discriminant classifiers produce statistically sim-
ilar accuracies to multinomial logistic regression classifiers
at a much lower computational cost when using Root Mean
Square, Time Domain (TD) and Auto Regression feature-
sets.

Hence, besides individuated finger movements, this paper
investigates the effectiveness of TD features and number of
channels on the classification accuracy by means of a GA.
The latter was developed for optimizing the classifiers by
finding good trade-offs (through a bonus function) between
number of features and channels and classification perfor-
mance. We show that is possible to eliminate the Slope Sign
Changes (SSC) feature for all subjects besides the amputee
and that for four out of the five able-bodied subjects the Zero
Crossings (ZC) features can be discarded.

The outcomes of this work open up interesting insights for
the development of clinically viable controllers for dexterous
prostheses.
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II. MATERIAL & METHODS

In this study, data from five able-bodied subjects (three
men and two women, aged 25-34) and one transradial
amputee were used. Surface EMG-signals were acquired
using an in-house built amplification and acquisition system.
The system acquired 16 channels of EMG, sampled at 1.6
kHz per channel and with a bandpassfilter between 0.5 Hz
and 800 Hz with 16-bit resolution and a gain of 56 dB per
channel. A custom-built LabView application was used to
record and store the data.

Red Dot Ag/AgCl (3M Health Care, Germany) electrodes
were used in the study. The electrodes were placed on
the forearm of the participants as shown in Figure 1. In
particular twelve electrodes were placed on the superficial
flexor muscles on the volar side of the forearm and four
electrodes were placed on the superficial extensor muscles
on the dorsal side of the forearm. Electrodes were placed in
order to cover as many independent muscles as possible. The
optimization of the electrode localization was accomplished
by minimizing the cross-talk visually. The participants were
seated in front of a screen with their forearm resting on a
pillow during the time of the experiment. Thirteen different
movements were executed by the subjects in response to
a written and pictorial cue on the screen that depicted the
movement to be reproduced.

Fig. 1. Location of the 16 electrodes.

The movements consisted of flexions and extensions of all
the fingers individually as well as thumb adduction/abduction
and a rest class making up thirteen classes in total. These
movements would account for individual control of each digit
of a multi-fingered prosthesis. During the study after the cue
was given the movement was to be held between 4-6 seconds
until a rest cue was given. The rest state was of equal length
as the movement. Two different datasets each consisting of
five repetitions of each movement totaling 60 movements and
the rest states were stored on the computer along with the
intended class information.

A. Feature extraction and classification

Data were processed employing the Myoelectric control
development toolbox [10], the LIBSVM library [11] and
custom Matlab scripts. Signals were filtered using a 6th
order Butterworth bandpass filter (10-500 Hz) and notchfilter

Fig. 2. Diagram showing the arrangement of the signal processing parts.
The dashed section showing where the GA block is introduced, which is
skipped when generating the unoptimized results.

(centered at 50 Hz). Thereafter a feature-set composed of
four time metrics was computed using a window size of 250
ms with a 25 ms increment. The feature-set consisted of
the time domain statistics originally proposed for transient
signal classification by Hudgins et al., [12] and lately used
as a benchmark by many other studies, namely, the number
of Zero Crossings (ZC), the Wavelength (WL), the number
of Slope Sign Changes (SSC), and the Mean Absolute Value
(MAV) [13] (for a mathematical description refer to [14]).

Data was then used as input for the genetic algorithm
(GA) which tried to minimize the number of used inputs, by
testing multiple input combinations and their outcomes and
selecting solution that is the best according to the result of
the fittness function. A Principal Component Analysis (PCA)
was performed to further decorrelate (in principal component
space) the optimized number of features and inputs found
by the GA. The new feature-sets were subsequently used as
inputs for the different classifiers.

Three different traditional classifiers as those used in many
other studies were tested: LDA, k-NN and the SVM classifier
from the LIBSVM [11]. All of the classifiers besides the
SVM are available in Matlab. The k-NN classifier used had
a k of 16 and the euclidean distance was used as the distance
metric. The k value used was empirically found to give the
best results for this work. For all the classifiers one dataset
was used to train and the other was used for evaluation. The
individual processing parts and their arrangements are shown
in Figure 2.

B. Genetic Algorithm optimization

A GA is an iterative algorithm frequently used in opti-
mization and search problems that is inspired by the theory
of evolution [15]. It starts out with an initial population of
possible solutions to the given problem, which are called
chromosomes. The algorithm performs a blind search for a
solution, by varying the chromosome encoding values and
by looking how such variations affect the output of a fitness
function. The latter allows to determine how good a solution
is compared to the others and hence allows to determine
the best solution that is generated by the GA. From the
initial population, the fittest chromosomes are selected and
transferred to the new population. The other chromosomes
for the new population are produced by performing crossover
pairing among the chromosomes of the current population.
Some of these newly created chromosomes are randomly
selected to be subject to mutation where the chromosomes
are manipulated at random, in order to increase the diversity
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TABLE I
BINARY ENCODED ACTIVITY VECTORS THAT WHERE ISSUED BY THE GA. UNUSED FEATURES ARE NOT LISTED.

Dataset Features Channels Nch elim
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H1 MAV/WL 1 1 1 0 0 1 0 0 0 0 0 1 1 1 0 1 8
H2 MAV/WL 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 10
H3 MAV/WL 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 9
H4 MAV/WL 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 9
H5 MAV/WL/ZC 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 10
A1 MAV/WL/SSC 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 11
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Fig. 3. Resulting classification rates for the individual subjects using optimized features and channels, just optimized channels and all features and all
the channels and features and hence no GA optimization.

of the population. In the end of each evolutionary step the
whole population is evaluated once again by the fitness
function. This procedure is then repeated several times in
order to find the optimized solution. A detailed description
of GA can be found in [15].

In the present work 20 evolutionary steps, each having a
population size of 20 chromosomes were computed, allowing
the evaluation of 400 possible solutions to the problem. The
following rules were used.

1) A binary encoding was chosen to encode the chromo-
somes, where a one was referring to an enabled input
and zero to a disabled. Each possible solution consisted
of a 20bit chromosome (16 channels and 4 features).

2) The misclassification rate of the LDA classifier was
used as the fitness function to determine the fitness of
each chromosome. Furthermore, a bonus system was
included to promote the elimination of entire channels
or features from the input space.

Si = LDAerr − (Nch elim +N f eat elim)

Where LDAerr refers to the error rate returned by the
LDA classifier, N f eat is the number of features used
(four in this case). Nch elim is the number of eliminated
input channels which denotes the number of channels
that are eliminated commonly among all the features
used. N f eat elim refers to the number of features that

1610



were eliminated.
The formula applied to the given problem allowed for
an deduction of the LDA error rate by 1% for each
eliminated channel or feature.

3) The parent chromosomes for each pairing were picked
among all the population chromosomes by an uni-
formly distributed random process. After two parents
were found, the child was created by combining the
channel section from the chromosome of parent one
with the feature section from the chromosome of parent
two.

4) According to a predefined likelihood the child is sub-
ject to mutation. For this problem a mutation rate of
50% was used, where either one channel or feature was
eliminated.

III. RESULTS & DISCUSSION

The graphs displayed in Figure 3 show the outcomes
of the classifiers when using GA optimized features and
channels, just optimized channels and all features and all
the channels and features and hence no GA optimization.
The displayed values for each classifier correspond to the
mean of percentages of successful classification among all
the 13 classes and the corresponding standard deviation. The
reduction in the number of channels and features used for
the classifiers in general did not degrade the results of the
classifiers and considering subjects H3 and H5 the results of
the SVM even improved after channel reduction.

Within the displayed charts the results for the different
subjects are grouped according to the classifiers. Table I
shows the used inputs for the individual datasets, which
correspond to the fittest of chromosomes that was found
by the GA. In this table a one corresponds to an activated
channel and a zero to an inactive channel. The features
used for each dataset are noted in the Features column
and channels that were eliminated are counted in the last
column(Nch elim).

By comparing the outcomes of the different input combi-
nations that are depicted in the three charts in Figure 3, it
can be noted that for all subjects the reduction of features or
channels had little to no effect. Despite the large amount of
channels (≥ 8) that where removed, the ZC and SSC features
were as well eliminated by the GA for most subjects. This
suggests that the inclusion of these features in these cases
did not improve the performance of the classifier by more
than 1% per feature and hence they have been voted out.

Finally, the graphs show that even with a greatly reduced
number of inputs and features, high mean classification rates
(up to 80%) can be achieved over all of the 13 target classes.
Hence it can be said that for future works on this problem the
number of electrodes can be reduced by great means without
having a large impact on the classification outcomes.

IV. CONCLUSION & FUTURE WORK

The provided work showed that a high grade of redun-
dancy is contained within the datasets and hence the amount
of input channels that are needed to differentiate among the

13 classes can be reduced. Furthermore, the presented results
suggest that the ZC and the SSC features do not increase
the performance of the classifiers and in most cases can
be omitted and that using multiple redundant channels can
degrade classification results.

The use of a GA for the explained optimization task
proved a valid approach. Considering the number of possible
solutions for this problem being 220 (216 possible combina-
tions of inputs and 24 possible combinations of features) the
optimization using a GA is too time consuming, as it has
to perform a classification on each possible solution. Hence
other methods, e.g. based on multivariate statistics, could be
applied to further reduce the problem size before applying
the GA.

There is no significant difference in classification accuracy,
taking into account the standard deviation of the results,
when comparing the classifiers, which complies with the
results of Farrel [9].
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