
  

  

Abstract— In transradial amputees, the muscles in the 

residual forearm naturally employed by the unimpaired for 

flexing/extending the hand fingers, are the most appropriate 

targets, for multi-fingered prostheses control. However, once 

the prosthetic socket is manufactured and fitted on the residual 

forearm, the recorded EMG might not be originated only by the 

intention of performing finger movements, but also by the 

muscular activity needed to sustain the prosthesis itself. In this 

work, we preliminary show –on healthy subjects wearing a 

prosthetic socket emulator– that (i) variations in the weight of 

the prosthesis, and (ii) upper arm movements significantly 

influence the robustness of a traditional classifier based on k-nn 

algorithm. We show in simulated conditions that traditional 

pattern recognition systems do not allow the separation of the 

effects of the weight of the prosthesis because a surface 

recorded EMG pattern caused by the simple lifting or moving 

of the prosthesis is misclassified into a hand control movement. 

This suggests that a robust classifier should add to myoelectric 

signals, inertial transducers like multi-axes position, 

acceleration sensors or sensors able to monitor the interaction 

forces between the socket and the end-effector. 

I. INTRODUCTION 

O myo-electrically control a multi-fingered dexterous 

prosthesis – e.g. the recently marketed RSLSteeper 

BeBionic [1] or research prototypes like SmartHand [2] or 

the Vanderbilt University Hand [3], it is necessary to map 

electromyographic (EMG) signals corresponding to different 

muscle contractions to the different existing degrees of 

freedom (DoF) of the hand using a suitable algorithm. In 

research this is frequently done through pattern recognition 

based techniques [4]. Since the 1960s, various groups have 

designed controllers using different combinations of 

extracted features and classification methods (for a review of 

the EMG processing techniques refer to [5]) showing the 

feasibility of controlling dexterous prostheses. These systems 

have been demonstrated usually through offline pattern 

recognition [6]-[8], through algorithms suitable for real-time 

processing and classification [9]-[11], but only in few 
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instances, with actual real-time classifiers [12]-[14] or 

directly controlling robotic hand finger movements [15], 

[15]. Results in this field are improving increasingly but 

slowly, and research is mainly focusing on real-time signal 

processing techniques, pattern recognition algorithms and 

other computing issues. However, all previous research is 

related to experiments performed in controlled laboratory 

environment, with the stump of the subjects lying in a 

comfortable position: i.e. with no moving limbs/stumps. It 

is foreseen that future systems should be able to deal with 

bio-signals coming from a free-to-move residual limb; in 

such case, the main open problems are:  source localization 

(muscle motion problems), skin impedance changes, removal 

of artefacts, prosthesis donning/doffing, and separation of 

intention from other physical factors (like fatigue, stump 

posture, etc.). 

In transradial amputees, the (up to) 19 extrinsic muscles in 

the residual forearm and naturally employed by unimpaired 

for flexing/extending the hand fingers, are the most 

appropriate targets, for multi-fingered prostheses control. 

However, once the prosthetic socket is manufactured and 

fitted on the residual forearm (cf. Fig. 1), the recorded EMG 

might not be originated only by the intention of performing 

finger movements, but also by the muscular activity needed 

to sustain the prosthesis itself. Indeed, in contrast to a 

healthy forearm, in amputees, the actions caused by the 
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Fig. 1 Amputee reaching an object wearing the SmartHand. The unnatural 
reaching posture of the arm caused by the lack of the three degrees of 
freedom of the wrist/forearm is clear from this picture. 
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weight of the prosthesis (payload and inertia while moving) 

are partially distributed on the muscles above the elbow (e.g. 

biceps-triceps), and partially on the forearm muscles; this 

reinforced as the reaching posture of the prosthetized limb is 

generally unnatural due to the lack of biomechanically 

correct wrist movements (cf. Fig. 1). Additionally, 

movements of the socket relative to the stump (caused e.g. 

by the inertia of the prosthesis when it is moved) might 

generate artefacts, i.e. involuntary signal variations. 

Traditional techniques do not allow the separation of such 

effects, therefore, an EMG pattern caused by only to the 

lifting or maintaining of the prosthesis can be misclassified 

into a hand control movement, as a consequence of a false 

positive. 

To tackle this problem, the idea of a robust interface 

including EMG and inertial transducers (i.e. multi-axes 

position and acceleration sensors) for intuitive prostheses 

control has been recently patented by Cipriani et al., [17] 

and similarly, the adverse effects of limb position on pattern 

recognition control have been investigated on healthy 

subjects and presented by Scheme et al., [18]. Within this 

framework, in the present paper, we preliminarily show –on 

healthy subjects and emulated conditions– that (i) variations 

in  the weight of the prosthesis, and (ii) upper arm 

movements weaken the robustness of pattern recognition. 

Results of this work, although still preliminary, suggest a 

simple but effective strategy for the control of multi-fingered 

prostheses based on the monitoring of the prosthesis weight 

and upper limb posture. 

II. MATERIALS AND METHODS 

Two able-bodied subjects (two men aged 25 and 27 years 

old) took part in this preliminary study. The dominant hand 

was the right hand for the first subject and the left one for the 

second. Raw surface EMG data were collected employing 

the Noraxon TeleMyo 2400R (Noraxon, Scottsdale, AZ, 

USA) through a wireless unit (TeleMyo 2400T). Raw data 

were then acquired at a sampling frequency of 1.5 kHz, 1st 

order 10 Hz hardware high-pass filtered, 8th order 500 Hz 

hardware Butterworth low-pass antialiases filters, resolution 

of 12 bits, hardware gains of 1000, and stored for an offline 

analysis in MatLab (The MathWorks, Natick, MA) 

environment. In order to investigate on individual finger 

classification eight channels were used to record myoelectric 

activity from the right-hand forearm muscles. Disposable 

Ag–AgCl surface electrodes in bipolar configuration with an 

inter-electrode distance of 20 mm were used. Four channels 

recorded signals from superficial flexor muscles on the volar 

side of the forearm and four channels were placed on the 

superficial extensor muscles on the dorsal side of the forearm 

as shown in Fig. 2. The reference electrode was placed on 

the proximal part of the lateral epicondyle. 

The participants were seated in front of a screen with their 

forearm resting on a pillow during the time of this 

experiment. The hand default posture allowed the extrinsic 

muscles to be totally relaxed, as visually inspected through 

the EMG recording system. Ten different movements were 

executed by the subjects in response to a written and 

pictorial cue on the screen and an auditory cue that depicted 

the movement to be reproduced. The movements consisted 

of flexions and extensions of the thumb and index fingers 

individually, of the middle, ring, and little finger as a group, 

of the long fingers (all but the thumb) as a group and of 

thumb abduction, and finally of a rest class making up ten 

classes in total. These movements would account for 

individual control of each degree of freedom of an advanced 

prototype like the VU- or the Smart- hand [2], [3]. Each 

movement was sustained for 5 seconds and a 5 second rest 

was given between subsequent movements. Two different 

datasets each consisting of 3 repetitions of each movement 

totalling 27 movements and the rest states were stored on a 

computer along with the intended class information. 

A simple but effective classifier already used in our 

previous work was employed [16]. It consisted of a k-nearest 

neighbour (with k equal to 8) algorithm employing the 

Euclidean distance as the distance metric and the mean 

absolute value (MAV) as feature set. For both subjects the 

first recorded dataset was used for training (hereafter 

calibration dataset) and the second for evaluation. The 

resulting classification accuracies are shown in the confusion 

matrices in Fig. 3. It is worth underlining that the 

classification accuracy for the relax state was 91% and 95% 

for the first and second subject, respectively. 
 

 
Fig. 3 Confusion matrices from the two participants. Movement list: Tf: 
thumb flexion, If: index flexion, 3f: three fingers (middle, ring and little) 
flexion, 4f: four fingers (index, middle, ring and little) flexion, Te: thumb 
extension, Ie: index extension, 3e: three fingers extension, 4e: four fingers 
extension, R: relax. 

 
 

Fig. 2 Placement of the electrodes on the right hand forearm of one of the 
participants.  
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Two experiments –as detailed in the following sub-

sections- were carried out in order to asses the worsening 

effects of the weight actions (payload and inertia while 

moving) of the hand prosthesis on a simple pattern 

recognition based control.  

A. Weight Effects 

In order to resemble the fact that transradial amputees 

wear a prosthetic socket usually rigidly connected to the 

elbow and hence cannot pronate/supinate the forearm, 

subjects during this experiment wore a prosthetic socket 

emulator (cf. Fig. 4A-D), that impeded forearm movements 

and kept the hand always in fixed –and relaxed– position.  
 

 
Fig. 4 Experimental protocols. Shoulder abduction/adduction movement 
(A-B) and the elbow flexion/extension (C-D). The postures depicted in 
pictures A and B were also used in the weight effects experimental protocol. 

 

Subjects were asked to hold with their right hand arm a 

static posture while the endpoint of the socket emulator was 

cyclically loaded and unloaded with a mass (3 seconds 

loaded and 3 seconds unloaded, 5 times). Two static postures 

were tested, the first (posture A) with the arm attached to the 

body and the elbow forming a 90 degrees angle (cf. Fig. 4A) 

and the second posture (posture B) maintaining the elbow 

flexion and abducing the shoulder until bringing the arm in 

line with it (cf. Fig. 4B). Theoretically in both postures the 

payload was not supported by forearm muscles (those 

involved in the grasp action), but by arm and shoulder 

muscles. Subjects were instructed to keep their forearm 

muscles always relaxed during the loading/unloading 

cycles. In the first posture 4 loads (5, 10, 15 and 20 N) were 

tested; in the second posture just the 20 N load was used. 

This protocol aimed to imitate and investigate the effects on 

pattern recognition of the weight of the prosthesis acting with 

a certain lever arm on the prosthetized stump of a transradial 

amputee. The recorded EMGs were classified using as 

training data the calibration dataset. 

B. Movement Effects 

Effects of inertia on the classification accuracy were tested 

in this second experiment. Subjects were asked to execute 

two kinds of movement not involving the forearm muscles: 

the first one was shoulder abduction/adduction (between 

postures A and B in Fig. 4A-B), the second one was elbow 

flexion/extension (between postures C and D in Fig. 4C-D). 

In both cases subjects were asked to perform cyclically at 

physiological speed (i) the first part of the movement (e.g. 

shoulder abduction), (ii) keep the position for 3 seconds, (iii) 

perform the second part of the movement (e.g. shoulder 

adduction) and (iv) keep this position for 3 seconds. Audio 

cues for an easier synchronization were delivered through 

earphones. In order to mimic the prosthetized condition a 0.5 

kg mass was attached to the end of the socket emulator (the 

standard weight of an adult size prosthesis is around 0.5 kg 

indeed [1]-[2]). Subjects were instructed to keep their 

forearm muscles always relaxed, and the EMG signals while 

performing the movements were acquired and off-line 

classified using as training data the calibration dataset. 

III. RESULTS AND DISCUSSION 

A. Weight Effects 

Subjects were instructed to keep their hand relaxed during 

the loading/unloading cycles. Since the mass was ideally 

sustained by biceps and shoulder muscles (in posture A and 

B, respectively), the extrinsic muscles of the hand in the 

forearm were not supposed to be active. Instead, as 

hypothesized in the introduction the load was partially 

sustained also by the forearm muscles, which activity led to 

misclassification of the relax state. This effect is depicted in 

the temporal graph in Fig. 5 where a representative sample 

from subject 2 is shown (load: 15 N). The black line denotes 

the mean MAV among the 8 EMG channels, whereas the red 

dots indicate the output class label computed by the k-nn 

classifier (label 5 corresponds to the relax class). U and L 

intervals on the time scale denote the load and unload 

phases, respectively.  

The graph clearly shows the myoelectric activity 

variations causing the relax state to be misclassified every 

time the load was applied, and properly classified once the 

load was removed. Table I resumes the relax classification 

accuracies resulting from the whole dataset that included the 

loading and unloading phases, for the two subjects in both 

postures tested (cf. Fig. 4A and B). The effects of the weight 

were highly subjective and further investigations are hence 

required before being able to draft any conclusion. However, 

as a general preliminary remark, static loads yielded to a 

decreased classification accuracy (worse for subject 2 where 

EMGs were recorded from his non-dominant arm). By 

transferring this to the transradial amputee situation, a 

traditional pattern recognition algorithm would generate 

involuntary control commands every time the weight of the 

prosthesis changes (e.g. every time a new object is grasped). 
 

 
Fig. 5 EMG activity (black line) and classifier output (red dots) from 
Subject 2 during loading (L) and unloading (U) phases using the 15 N load.  
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TABLE I 
CLASSIFICATION ACCURACIES OF THE RELAX STATE AT DIFFERENT LOADS 

AND LIMB POSTURES 

 Posture A Posture B 

 
5 N  
load 

10 N 
load 

15 N 
load 

20 N 
load 

20 N  
load 

Subject 1 100% 100% 80% 65% 61% 

Subject 2 33% 28% 44% 47% 48% 

 

B. Movement effects 

A representative temporal graph of EMG activity and 

classifier output stream is shown in Fig. 6. Similarly to the 

other test, the plot shows that the myoelectric activity causes 

the relax state to be misclassified every time the forearm 

moves (from C to D, cf. Fig. 4C-D), and is maintained flexed 

(posture D). In this case the activity might also be caused by 

artefacts due to cyclical peaks of pressure of the socket 

emulator on specific electrodes; this effect would still be 

present in the case of an amputee wearing a prosthetic 

socket, hence is of interest to this study. 

Table II resumes the relax classification errors resulting 

from the whole dataset for the two subjects performing the 

two movements. Considering that in the whole dataset the 

transitions between one posture to another accounted for 

about 20% of the total time (transition time of about 0.75 

seconds), the measured classification errors are significantly 

high (as in the other test higher for subject 2). By 

transferring this to the prosthetized situation, a traditional 

pattern recognition algorithm would generate involuntary 

control commands every time the prosthesis is moved. 
 

 
Fig. 6 EMG activity (black line) and classifier output (red dots) during 
flexion-extension of the elbow by Subject 2. C and D time intervals 
represent the windows when the elbow was flexed and extended, 
respectively (as shown in Fig. 5C and D). 
 

TABLE II 
CLASSIFICATION ERRORS OF THE RELAX STATE WITH DIFFERENT MOVEMENTS 

 Shoulder movement Elbow movement 

Subject 1 24% 14% 

Subject 2 34% 24% 
 

To obviate this clinical issue once the socket is fitted on 

the stump, i.e. to remove the load and inertial effects of the 

prosthesis on the amputee’s residual forearm, one possible 

approach is to monitor the posture and movement of the 

prosthetized limb (this data could be easily computed by 

means of DoF sensors, having on board accelerometers and 

gyros along multiple axis) and/or monitor the interaction 

forces between the socket and the prosthesis (by means of 

multiple axis load cells). Such information could be used to 

compute the load and inertial force vectors which affect 

EMGs, and once modeled, such effects could be 

compensated by the controller. 
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