
 
 

 

 

Abstract— The reduction of the number of EEG features 
to give as inputs to epilepsy seizure predictors is a needed 
step towards the development of a transportable device for 
real-time warning. This paper presents a comparative study 
of three feature selection methods, based on Support Vector 
Machines. Minimum-Redundancy Maximum-Relevance, 
Recursive Feature Elimination, Genetic Algorithms, show 
that, for three patients of the European Database on 
Epilepsy, the most important univariate features are related 
to spectral information and statistical moments. 

I. INTRODUCTION 
pilepsy is one of the most prevalent neurological 
disorders, and affects approximately 1% of the world’s 

population [1].  This disorder is characterized by the 
occurrence of episodic abnormal cerebral electrical activity 
referred to as seizures. Advances in epileptic seizure 
prediction would represent a significant improvement in 
the daily life of refractory epilepsy patients and an 
important step towards the development of closed-loop 
therapeutic systems. 

Despite the common agreement that a ‘preseizure’ state 
exists, i.e., that the transition from a normal (‘inter-ictal’) 
to seizure (‘ictal’) state occurs through a gradual 
transformation, few significant progresses have been made. 
During the last decades numerous features were proposed 
to characterize the EEG signals of the ‘pre-ictal’ period but 
the absence of reproducible results and statistical 
significance of the proposed measures have been a major 
obstacle in the development of clinical applications [2]. 

In recent years, the analysis of high-dimensional feature 
spaces [3], and the use of machine learning methods has 
been proposed [4]. Support Vector Machines (SVMs) is 
considered as a promising approach, with the advantage to 
create individually tailored solutions. 

The analysis of high dimensional feature spaces in 
pattern recognition is usually constrained by the curse of 
dimensionality, which can disturb the performance of 
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machine learning methods. To face these limitations it is 
important to select the appropriate subset of features [5].  

A promising study was presented by [6][7], using a 
genetic algorithm and a high dimensional feature space to 
identify a patient specific optimized subset of features to 
compare the 'preseizure' and the 'no-preseizure' classes. 
The results however presented a high false prediction rate.  

In the present work, we applied three different feature 
selection techniques to a high dimensional feature set to 
obtain an optimal predictor based on a subset of features 
selected from a candidate set of electrodes and quantitative 
features. A filter method, a wrapper method (both based on 
SVMs) and a genetic algorithm (to optimize the SVMs' 
parameters and the subset of features selected) were used to 
improve the classification performance and understanding 
about the feature sets.   

The low-dimensional sets obtained were used as the 
input of SVMs to predict seizures in out-of-sample data, 
i.e., prospectively. 

The paper is presented as follows. Section II presents the 
datasets used throughout the study and a brief description 
of the feature selection and machine learning methods 
used. A summary of the results is presented in section III. 
Finally, the concluding remarks are presented in section 
IV. 

II. METHODS 

A. Dataset 
The data used for this study consists in multichannel 

long-term EEG recordings obtained from 3 epilepsy 
patients. The patients were monitored during several days 
using scalp electrodes placed according to the 10-20 
system. The seizures and epileptiform activities were 
annotated by a trained technician and reviewed by a 
neurologist. An overview of the data is presented in table I. 
The dataset is part of the database [8] developed by the 
EPILEPSIAE1 project. 

Each patient dataset was divided into three subsets: 
training, testing and validation sets. The training set is 
composed by the period of time containing three seizures. 
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The testing and validation sets, both contain at least one 
seizure. 

Another important variable in seizure prediction is the 
considered pre-ictal period. This is especially relevant in 
machine learning since it is necessary to define a target. 
Two different periods were considered based on our 
previous experience: thirty and forty minutes before the 
seizure onset. 

One of the main challenges in machine learning is to 
deal with unbalanced datasets. The inter-ictal period is by 
far longer than the relatively short pre-ictal, ictal and post-
ictal periods. To deal with the biased datasets and to 
improve the computational performance of the algorithms, 
the inter-ictal class was under-sampled in the training set. 

B. Feature Extraction 
The features considered in this study were computed 

using EPILAB [9]. This software includes a variety of 
feature extraction methods and prediction algorithms that 
allow a rapid design and training of different algorithms 
using long-term EEG signals.  

The features are based on a non-overlapping 5-second 
sliding window segments: signal energy, decorrelation 
time, relative spectral power, energy of the wavelet 
transform coefficients, spectral edge power and frequency, 
Hjorth mobility and complexity, mean, variance, skewness, 
kurtosis, and autoregressive modeling error. The complete 
set includes 22 features per electrode. 

C. Feature Selection Methods 
Feature selection methods identify a subset of univariate 

features useful to optimize the seizure predictor and 
ranking all potentially relevant feature-electrode 
combinations.  

Three techniques have been applied (an overview of the 
methods is presented in Fig. 1). 

1) Minimum Redundancy Maximum Relevance 
(mRMR) 

The mRMR algorithm implemented [10], is an iterative 
procedure that ranks a set of features minimizing the 
redundancy (among the subset of features) while 
maximizing the relevance of the features.   

The first step of mRMR algorithm is based on a 
statistical F-test, as a relevance measure, and computation 
of the Pearson’s correlation among features as a 
redundancy measure. After selecting the first feature, i.e., 

the feature with maximum value of relevance (F-test 
ranked set) with the target, the remaining set of features is 
iteratively selected based on the mRMRscore. In this work, 
the approach used to compute the coefficient was the F-test 
correlation difference (FCD) (eq.1) 

 

 (1) 

  
where ),( siF  represents the relevance coefficient and 

the second term represents the redundancy between 
features. The first 132 ranked features were selected as 
inputs for the predictor.  

2) Recursive Feature Elimination (RFE) 
A different approach is used in the RFE-SVM algorithm 

described by [11]. RFE-SVM follows an iterative 
procedure based on the following three steps: (i) training a 
classifier (optimization of the SVM parameters and 
weights of each feature); (ii) compute the ranking criterion 
based on the weights computed (wi

2) and  (iii) removing 
the features with lowest ranking criterion.  

Although SVMs can use non-linear kernels to solve 
complex decision boundaries, we limit our method to the 
linear kernel, because with this kernel it is possible to 
correlate the weight vector obtained in the support vectors 
computation with the importance of each feature to our 
problem.  

3) Elitist Non-dominated Sorting Genetic Algorithm 
(NSGA-II) 

 Evolutionary Algorithms (EA) are inspired by 
biological evolution; each possible solution  is represented 
by a coded  “chromosome”. Elitist Non-dominated Sorting 
Genetic Algorithm (NSGA-II) [12] represents a multi-
objective EA based on non-dominated sorting approach. 

TABLE I 
DATASET DESCRIPTION 

Patient Epileptic focus  
Duration 
(hours) 

Number of 
seizures 

Number of 
channels 

A Fronto-temporal 78  12 31 
B  frontal 138  11 24 
C  frontal 252.6  9 27 

 

 
Figure 1 - Overview of the methods used in this work. 
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Using this approach, the features combined serve as inputs 
to the classifier (SVM) based selection process. 

In the present study, NSGA-II has four different fitness 
functions: sensitivity, specificity, number of inputs and 
number of channels. In other words, the method tried to 
optimize the SVM parameters maximizing the sensitivity 
and specificity while minimizing the number of inputs and 
number of channels (Fig. 1). The input of the GA in our 
study corresponds to a binary string that codes the SVMs' 
parameters (C and γ) [13] and the subset of features. 

The size of the features subset obtained using NSGA-II 
is variable and dependent on the algorithm stopping 
criterion, in this paper, the algorithm stops after 1000 
iterations. The initial population considered 50 
individuals. 

D. Classification Strategy 
SVM is a margin classifier that draws a hyperplane in 

the feature space defining a decision boundary between 
samples of different target classes. In this study we used 
the MATLAB interface of the libSVM library [13] and 
MATLAB’s Parallel Computing Toolbox. The values 
accepted to optimize the C and γ parameters were 
comprised between 20 and 216 and 2-16 and 216 respectively.  

III. RESULTS AND DISCUSSION 
Table II summarizes the results of the best models 

obtained using the different methods. The unbalance 
between the number of samples of each class, lead us to 
consider the tradeoff between sensitivity and specificity. 
Therefore the best models were selected based on the 
overall ability to correctly classify pre-ictal samples while 
achieving good accuracy results. 

Patient A - The best classification results were obtained 
using the subset computed using mRMR (Fig. 2 - a.1 and 

a.2). The statistical moments, i.e. variance, skewness, 
mean and kurtosis, appear to have some correlation to the 
target defined. Additionally, spectral features (especially 
the high frequency bands) also appear in the subset. 
Electrographical records suggest the importance of ‘F9’  
‘FT9’ ‘T9’ electrode sites in ictogenesis, however, our 
methods do not present any particular pattern concerning 
electrode selection (focal electrodes or laterality). The 
subset computed using RFE-SVM presents similar results. 
The best model obtained by NSGA-II presents very good 
results in the test dataset  (sensitivity of 99,87%, specificity 
of 62,30% and an accuracy of 66,87%), but failed to obtain 
similar results using an out-of-sample, validation dataset. 
This suggests that NSGA-II algorithm was not able to find 
a model with a good generalization capability.  

Patient B - The model that presented the best results 
achieved an accuracy of 71% (Fig. 2 b.1 and b.2), and was 
obtained using RFE-SVM. NSGA-II found a solution with 
7 channels and 9 features, and emphasized the importance 
of spectral features (spectral edge power, in particular); the 
model presented a sensitivity of 63%, specificity of 70%, 
and  68% of accuracy, in the testing set. The performance 
in the validation dataset was slightly worse, the SVM 
presented a sensitivity result of 54%, specificity of 61% 

TABLE II 
SUMMARY OF THE RESULTS 

Patient Method Sensitivity Specificity Accuracy 

A 
mRMR 29,02%  73,02% 69,33% 

RFE 11,02% 88,83% 91,91% 
NSGA-II 0,27% 99,61% 95,78% 

B 
mRMR 30,51%  71,33% 67,45% 

RFE 40,00% 71,92% 71,68% 
NSGA-II 53,87% 61,00% 59,13% 

C 
mRMR 68,16%  75,97% 74,96% 

RFE 67,81% 82,90% 80,16% 
NSGA-II 89,54% 84,16% 80,63% 
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Figure 2 - Overview of the best models obtained for each patient. a.1) features selected in patient A dataset using mRMR a.2) channels selected in patient A 
dataset using mRMR b.1) features selected in patient B dataset using RFE-SVM b.2) channels selected in patient B dataset using RFE-SVM c.1) features 
selected in patient C dataset using NSGA-II c.2) channels selected in patient C dataset using NSGA-II  
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and accuracy of 60%. The classification results obtained 
using both mRMR and RFE-SVM are quite similar; the 
features selected highlight the importance of spectral 
information (especially low frequency bands of the wavelet 
coefficient analysis). No relevant pattern is noticeable in 
the electrode selection. 

Patient C - For this patient, the best solution was 
computed using NSGA-II (a complete description is 
presented in Fig. 2 c.1 and c.2). The values of specificity, 
sensitivity and accuracy were all above 80%, with 
specificity near 90%, using only 22 features (notice that 
there is some emphasis in frontal-temporal electrode sites). 
The features selected suggest that spectral information is 
determinant for a good classification.  

mRMR and RFE-SVM also achieved good classification 
results; the subset computed using RFE-SVM is based on 
spectral features, namely, relative power in the frequency 
sub-bands delta, theta, alpha, and the subset obtained using 
mRMR has important contribution from statistical 
moments and features that characterize low frequency sub-
bands. 

IV. CONCLUSION 
In this paper we analyzed three different feature 

selection methods in seizure prediction studies. The 
objective was to present possible methodologies to identify 
optimal combination feature-electrode for seizure 
prediction. 

The dimensional reduction performed using feature 
selection represented a significant improvement in the 
performance of the predictors; the reduction of the high 
computational cost associated to high dimensional feature 
spaces can also be an important asset for real-time 
implementation of the predictors. 

The resulting subsets revealed specific patterns for each 
patient, confirming the need for individually tailored 
algorithms, and appropriate combination between 
electrodes and features. 

The results obtained for Patient C, the best computed in 
this work, suggest that it is possible to select an optimal 
feature subset based on a reduced set of features and 
channels. The electrode selection was not confined to the 
focal electrodes indicating the importance of areas outside 
the ictal region. The features selected highlight the 
relevance of spectral information; different sub-band are 
represented in the subset. The autoregressive predictive 
error (ARcoeff.) is also selected in the best model. 

Patients A and B did not present so encouraging results. 
Nevertheless, the best models achieved accuracies close to 
70%. The analysis of the subsets allowed us to conclude 
that, similarly to patient C, electrode selection was not 

restricted to the ictal area. 
The large number of electrodes that were selected in the 

feature subsets may represent an obstacle towards the 
development of clinical devices. Future work includes 
applying these methods restricting the number of channels. 

NSGA-II computational requirements can represent an 
obstacle for the development of predictors; RFE-SVM and 
mRMR are, considering computational arguments, more 
viable solutions.  
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