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ABSTRACT 

 
A new low complexity seizure prediction algorithm is 
proposed.  The algorithm achieves high sensitivity and low 
false positive rates in 10 out of 18 epileptic patients from the 
Freiburg database.  Its primary achievement is two orders of 
magnitude computational complexity reduction. The 
reduced complexity makes an implantable medical device 
application realizable.  In the subset of ten highly 
predictable patients average sensitivity is 96%, average 
specificity is 0.25 false positives per hour, and 13.5% of 
time is spent in false alarms.   For all eighteen patients 
tested, the average sensitivity is 83%, the average specificity 
is 0.38 false positives per hour, and the amount of time 
spent in false alarms is 21.1%.  This result may be compared 
with sensitivity of 97.5%, specificity of 0.27 false positives 
per hour, and 13% of time is spent in false alarms of prior 
results without complexity reduction. 

Index Terms — Epilepsy, Seizure Prediction, Implantable 
device, Support Vector Machine (SVM), Feature Selection 
 

1. INTRODUCTION 
 
Epilepsy causes approximately 1% of the entire world’s 
population to experience sporadic, debilitating seizures.  
The current preferred treatment for preventing epileptic 
seizures is drug therapy, which works well in a large 
number of patients.  Of the remaining patients, many are 
good candidates for surgical treatment.  However, 
approximately one quarter of epileptics do not benefit 
sufficiently from any treatments.  An implantable medical 
device for predicting seizures will drastically improve these 
patients’ quality of life, since an alert would allow them to 
take precautions before a seizure occurs.  An implantable 
prediction device will also make closed loop therapy 
feasible – automatically releasing fast-acting medication or 
other therapies to prevent the seizure entirely.  In addition, 
continuous medication for treating epilepsy can be 
debilitating, and brain surgery is inherently dangerous and 
expensive with no guarantee of success.  Therefore, viable 
alternative treatment would benefit all epileptics. 
 

2. BACKGROUND 
 
There has been significant research in the field of seizure 
prediction and detection.  Machine learning approaches such 
as support vector machines (SVMs) have been shown to be 
very promising for classification of pre-ictal (before seizure) 
and inter-ictal (between seizure) electro-encephalogram 

(EEG) data [1].  However, in the past these methods have 
been far too computationally complex for implementation in 
an implantable medical device.  Medical device industry 
professionals have used ~50 µW as a guideline for power 
consumption of a realizable seizure detection or prediction 
implantable device [2].  To reach this goal, the machine 
learning algorithm must use very few features.  Other 
factors such as filtering, SVM kernel type, and sampling 
rates also have a dramatic effect on power consumption.   
 
All of these factors must be addressed, while still retaining 
the highest prediction accuracy possible, for a successful 
seizure prediction algorithm.  To accomplish this, the 
proposed algorithm makes use of extensive off-line training 
to choose a limited number of optimal features.  The 
algorithm begins by combining features to produce new, 
more efficient, and easier to classify features.  From this 
optimized feature set, the algorithm then selects only a few 
features to allow correct classification of data.  An 
exhaustive search of feature combinations would require 
weeks on a supercomputer. Instead, a greedy approach has 
been designed.  Finally, it is very important for the 
algorithm to choose positive pre-ictal samples and negative 
inter-ictal samples carefully.  If a large portion of positive 
training samples look identical to negative training samples, 
the model produced by the SVM is certain to be poor.  
Therefore, the selection of the pre-ictal positive data is tuned 
very carefully within the algorithm. 
 

3. DIVERGENCE MEASUREMENT 
 
The basis for much of the complexity reduction achieved in 
the proposed algorithm is through the use of the divergence 
measurement method proposed by Henze and Penrose [3].  
The best possible features used for classification have high 
mean difference between positive and negative samples and 
low variance.  Accurately measuring mean or variance can 
be difficult and imprecise.  Also, a formula would be 
necessary to determine tradeoffs between mean difference 
improvement and variance degradation, or vice versa.  
 
Instead, the Henze-Penrose divergence (HPD) measurement 
can be used to determine if a feature will allow easier 
classification of positive and negative samples.  Single 
dimensional HPD begins with a list of N/2 positive and N/2 
negative samples sorted by amplitude.  In easily classifiable 
data, all of the positive samples would be at one end of the 
list, and all the negative samples would be at the other.  In 
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data which is difficult to classify, the two groups are heavily 
mixed.  HPD counts the number of adjacent points R of 
differing classification, and applies the following formula to 
produce a divergence measurement.   
 

HPD = 1 – R / N 
 
An HPD value of ~1 represents excellent divergence, and an 
HPD value of ~0.5 means the data is effectively random.  
Multi-dimensional HPD uses a minimum spanning tree 
(MST) instead of a sorted list, where R in the above formula 
is the number of edges connecting points of differing 
classification. 
 

3. TEST METHODS 
 
The proposed prediction algorithm has been tested on the 
Freiburg epilepsy database [4].  This database has been used 
extensively for the development and testing of new seizure 
prediction and detection algorithms.  It provides 6 channels 
of intracranial EEG recordings sampled at 256 Hz from 21 
epileptic patients who were candidates for surgical 
intervention.  More than 24 hours of data is available for 
each patient.  Since the database is publicly available, 
researchers can compare and contrast different algorithms 
on the same data set.  To accurately measure the 
effectiveness of the seizure predictor, leave-one-out cross-
validation is used.  For each patient, one seizure and a large 
block of inter-ictal data are completely isolated from the off-
line training methods to be used as a test set.  Once a 
predictor has been designed based upon the training 
seizures, it is then applied to the test set in order to measure 
prediction accuracy and false positive rate.  Each seizure is 
used once as a test set; no data is excluded from testing.  
Many prior works exclude near seizure inter-ictal data based 
upon suggestions in a paper by F. Mormann [5].  However, 
false positive rates excluding this near seizure inter-ictal 
data are also provided to facilitate comparison to past works. 
 

4. OFF-LINE TRAINING METHODS 
 
The final predictor is patient specific, so the entire training 
process shown in Fig. 1 is repeated for each patient.  
Arbitrarily chosen model parameters are avoided.  Instead, 
the algorithm is designed in such a way that these 
parameters (such as pre-ictal length) are deduced. 
 
4.1. Preprocessing – Filtering 
Before extracting the power spectral density of the EEG 
channels, the signals are first pre-whitened to remove the 
predictable auto-regressive components of the EEG.  The 

20-tap whitening filter for each channel is trained using 
inter-ictal data from that channel only.  This makes 
differences between inter-ictal and pre-ictal EEGs easier to 
identify by the divergence measurements performed in off-
line processing. 
 
4.2 Feature Extraction 
Power spectral density features are extracted from each of 
the six channels using Welch’s method [6].  This produces a 
total of 720 features.  Twenty second windows with half 
overlap are used.  This effectively generates a sample every 
ten seconds.  The twenty second window and 1Hz resolution 
were chosen through empirical testing. 
 
4.3 Feature Consolidation 
Next, single dimensional Henze-Penrose divergence (HPD) 
measurement is used to test linear combinations for 
beneficial feature consolidation.  The following algorithm 
defines the feature consolidation process: 
 
For each feature Xi 
 Yi = Xi + Xi+1 

If HPD(Yi) >= both HPD(Xi) and HPD(Xi+1) 
  Replace Xi with Yi 

Eliminate feature Xi+1 

Repeat until no Yi results in HPD improvement 

 
Frequency bands are only allowed to combine with adjacent 
frequency bands. For the implantable device the 
consolidations will be incorporated into the power spectrum 
estimation at no cost.  This method typically reduces the 
number of features to less than half of the original number.   
 
 4.4 Feature Selection 
After feature consolidation has maximized the information 
contained in each feature, feature selection is used to 
drastically reduce the number of features by selecting only 
those with excellent separation between positive and 
negative samples.  Selecting several features with good 
separation is insufficient.  Each added feature must improve 
the classification of additional points that weren’t already 
classified correctly.  Multi-dimensional Henze-Penrose 
divergence is used to determine the four features which best 
complement each other using the following method: 
 

 

F1 = feature with max(HPD(Xi)) 
F2 = feature with max(HPD(F1, Xi)) 
F3 = feature with max(HPD(F1, F2, Xi)) 
F4 = feature with max(HPD(F1, F2, F3, Xi)) 

Figure 1 – Off-line Training Algorithm Flowchart 
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An exhaustive search of all possible feature combinations is 
intractable.  Instead, the feature with the highest single-
dimensional divergence is chosen first.  The second feature 
is selected to maximize divergence when used in 
combination with the first.  The third and fourth features are 
selected using the same greedy approach.  Computation time 
for feature consolidation and selection on a single patient is 
only a few minutes on a standard PC and less than a minute 
on a high performance machine.  This allows consolidation 
and selection to be performed hundreds of times during the 
optimization process. 

 
Figure 2 – EEG Illustration Defining  

Pre-ictal Length and Gap 
 
4.5 Pre-ictal Gap Optimization 
All machine learning algorithms require training on positive 
pre-ictal samples and negative inter-ictal samples.  In prior 
work pre-ictal length, from which all positive samples are 
extracted, was arbitrarily assigned.  Negative samples are 
safely chosen from a long period without seizures. However, 
in order to predict seizures, it is necessary to find a change 
in EEG patterns immediately preceding the seizure.  By 
performing HPD on two groups of EEG samples, the 
maximum divergence achieved by feature consolidation and 
selection indicates whether a change has occurred between 
the recordings.  The algorithm tests divergence for inter-
ictal samples chosen from farther away from the pre-ictal 
samples. This finds negative samples preceding the assumed 
change in EEG.  We define the distance between negative 
inter-ictal samples and positive pre-ictal samples as the pre-
ictal gap, as illustrated in Fig. 2.  To determine the optimal 
pre-ictal gap a grid search followed by a pattern search is 
performed on training seizures.  The grid search changes the 
gap for all seizures simultaneously to find maximum 
divergence.  The pattern search then attempts to change the 
gap for each specific seizure to further improve divergence. 

4.6 Features for False Positive Reduction and Support 
Vector Machine Parameter Optimization 
To reduce the false positive rate in long inter-ictal periods, 
four additional features are added using several small 
sections of the long inter-ictal periods provided by the 
Freiburg data set.  A linear kernel for the SVM is used since 
it offers much lower computational complexity than radial-
basis function and polynomial kernels.  The SVM 
misclassification cost parameter is set through out-of-sample 
cross-validation on 20% of training data using a gradient 
search based on classification accuracy.  Since the number 
of available inter-ictal training samples is an order of 
magnitude higher than the number of pre-ictal training 
samples, the SVM cost ratio parameter is used to balance 
the misclassification error.  For example, if 100 pre-ictal and 
1000 inter-ictal samples are available for training, then pre-
ictal samples are given 10 times the misclassification cost so 
that sensitivity and specificity are given equal importance.  
This could be adjusted to reduce false positives at the 
expense of accuracy, or to increase accuracy at the expense 
of a higher false positive rate. 
 
4.7 Pre-ictal Length and Predictor Validation 
After the SVM has been trained, it is validated a second 
time with the data used to train it.  This is a quality 
assurance check ensuring the predictor is able to predict the 
seizures it was trained upon.  In previous seizure prediction 
efforts, pre-ictal length was defined arbitrarily to be 
anywhere from 1 minute to 2 hours preceding the seizure.  
In the proposed algorithm, the entire training process is 
repeated for pre-ictal lengths varying from 6 minutes to 30 
minutes in 2 minute intervals.  The model with the best 
prediction accuracy on training data is chosen as the final 
model applied to the test seizure.  If models trained with 
different pre-ictal lengths have the same accuracy, then the 
model with the lowest false positive rate on training data is 
used. 
 
4.8 Post-processing 
The support vector machine output must be filtered to 
reduce sporadic false positives.  The SVM output for this 
algorithm is filtered by a 9-tap median filter to eliminate 
outliers caused by artifacts and an 8-tap mean filter for 
further smoothing.  The hardware cost for this type of 
filtering is quite small. 

 
5. RESULTS AND DISCUSSION 

 
Figure 3 is the block diagram for the on-line prediction 
algorithm.  In the best 10 patients shown in table 1, average 
sensitivity is 96%, average specificity is 0.25 false positives 
per hour, with 13.5% of time spent in false alarm state.  
Including all patients, average sensitivity is 83%, average 

Figure 3 – On-line Predictor Block Diagram 
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specificity is 0.386 false positives per hour, with 21% of 
time spent in false alarm state.  Prior work without 
complexity reduction achieved average sensitivity 97.5%, 
average specificity is 0.27 false positives per hour, and 
13.0% of time is spent in false alarm state [7].  Our 
algorithm selects eight features, and in more than half of 
patients it selects high frequency bands from 100-128Hz. 
This supports conclusions reported in some recent epilepsy 
research publications [8].  Advance prediction time ranges 
widely from patient to patient, providing further evidence 
that pre-ictal length should be tailored to individual patients.  
Many of the advance prediction times are comparable to 
those found by other researchers [9]. 

 
7. CONCLUSION 

 
The proposed algorithm produces a predictor capable of 
good accuracy and low false positive rates on ten of the 
eighteen patients from the Freiburg database. This algorithm 
produces a patient-specific predictor of low enough 
complexity for implementation in an implantable seizure 
prediction device.  Future work will focus on improving 
performance of post-processing and reducing hardware cost 
of pre-processing.  A 20-tap whitening filter running at 
sampling frequency on every input channel will be very 
hardware and power intensive.  The 9-tap median and 8-tap 
mean filtering of the SVM output are inexpensive, but the 
complexity cost for a higher performance filter that 
significantly reduces false positives may be justified.   
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Table 1 - Prediction Results Table 
1. Patients 2, 8, and 13 are excluded due to insufficient seizure and/or inter-ictal data. 
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