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Abstract— This paper introduces a new method for measur-
ing cortical excitability using an electrical probing stimulus via
intracranial electroencephalography (iEEG). Stimuli consisted
of 100 single bi-phasic pulses, delivered every 10 minutes.
Neural excitability is estimated by extracting a feature from the
iEEG responses to the stimuli, which we dub the mean phase
variance (PV). We show that the mean PV increases with the
rate of inter-ictal discharges in one patient. In another patient,
we show that the mean PV changes with sleep and an epileptic
seizure. The results demonstrate a proof-of-principal for the
method to be applied in a seizure anticipation framework.

I. INTRODUCTION
This paper introduces a new method for measuring cor-

tical excitability using intracranial electroencephalographic
(iEEG) responses to an electrical probing stimuli. The aim
of the paper is to relate the measurement of cortical excitabil-
ity to electrographic epileptic events. There is substantial
evidence that epileptic seizures are preceded by, or occur
with, a temporary increase in cortical excitability (see be-
low). Therefore, tracking cortical excitability may lead to a
clinically viable seizure anticipation method.

The majority of previous approaches for seizure pre-
diction/anticipation have used features from ongoing EEG
recordings (passively observed) to track the ‘state’ of the
brain. Although most methods are mathematically quite
varied, the majority are conceptually similar and focus on
measuring the degree of order within the brain. A de-
crease in order or complexity indicates abnormal hyper-
synchronous dynamics associated with a pre-seizure state.
Earlier algorithms involved estimating entropy, correlation
dimension, and short-term Lyapunov exponents [1], [2],
[3], [4], [5]. The research focus shifted to synchronization
analysis after the aforementioned methods failed to deliver
repeatable results [6], [7], [8]. These algorithms have shown
promise in certain patient groups, but they have not delivered
reproducible outcomes and, therefore, have not provided
satisfactory clinical performance [9], [10]. This motivates
further research and a rethinking of the traditional seizure
prediction framework, such as monitoring cortical excitabil-
ity rather than measuring the degree of order within the brain.
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Epileptic hyper-excitability has been measured by a num-
ber of different modalities. It has been shown that there are
major and prolonged changes in cortical excitability in the
preictal time period using motor responses to transcranial
magnetic stimulation (TMS) [11], [12], near infrared spec-
troscopy (NIRS) [13], functional magnetic resonance imag-
ing (fMRI) [14], EEG auditory steady-state responses [15]
and others. An important contribution in our understanding
of preseizure excitability is from a study that used magne-
toencephalographic visual steady-state responses to quantify
preseizure excitability [16]. This research was later ex-
tended to incorporate electrical stimulation for patients with
mesial temporal lobe epilepsy [17]. The results of the study
demonstrated a clear relationship between iEEG responses to
electrical stimulation and seizure occurrence. The increase
in the neural response was attributed to hyper-excitability.
Furthermore, it has been shown theoretically from a number
of different stand-points that an active-EEG approach is re-
quired for tracking the preseizure neurodynamics [18], [19].
These studies support the new methodology presented in
this current paper, which employs the active-iEEG paradigm
for tracking cortical excitability in neocortical temporal lobe
epilepsy.

II. METHOD

A. Patients

Data was collected from 2 patients undergoing evaluation
for the surgical resection of epileptic foci at St. Vincent’s
Public and Private Hospital’s in Melbourne, Australia. Data
was collected under the appropriate ethics approval (HREC-
A 006/08). The standard clinical practice for epilepsy related
surgery involves a diagnostic period of one week, where in-
tracranial EEG electrodes are implanted to map pathological
oscillations in the electrical fields of the brain. In addition,
the electrodes facilitate mapping of important functional
brain tissue, such as speech and motor control, by observing
behavioural responses to electrical stimulation.

B. Data Acquisition and Stimulation

In parallel to the standard clinical procedure, the research
protocol was conducted to estimate cortical excitability.
Electrical stimuli (delivered by a Grass S88x neurostimula-
tor, Astro-Med) consisted of single bipolar, biphasic pulses
delivered in groups of 100, with each pulse separated by
3.01s. A rest period of 5 minutes was included between
each stimulation group. The pulse width was 100µs with
current intensity of 2mA. The current intensity yielded
a charge/phase of 0.2µC/phase and a charge density of
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approximately 0.4µC/phase/cm2 (for an electrode diameter
of 4mm). This charge density is approximately 2 orders
of magnitude below the well-documented safety limits of
30µC/phase/cm2 [20], [21], [22], [23]. Stimuli were targeted
to low-impedance electrodes, away from the cerebral vascu-
lature, to the suspected epileptic foci and surrounding tissue.

All data was collected via intracranial grid electrodes (Ad-
Tech medical). The data from the first patient (Patient 1) was
collected from a 15×8 array of platinum disk electrodes with
regular spacing in the x-direction of 5mm and 10mm in the
y-direction. The data from the second patients (Patient 2)
was from a 8×4 array with regular spacing of 10mm in
both directions. Intracranial EEG was sampled at a rate of
5 kHz and the system (Synamp2, Compumedics) allowed for
recording from a DC level (24-bit resolution), so transient
responses to stimuli could be observed.

C. Signal Processing

When eliciting an observable response in the iEEG from
a single pulse electrical stimulation, the recording resembles
the early component of an evoked-response from an audi-
tory (click) or visual (flash) evoked experiment. Naturally
occurring evoked-responses are thought to be due to a phase
reseting of the cortical oscillations [24]. Therefore, phase-
locking measures are a logical choice for quantifying the
level of response that is induced when using electrical
stimulation.

The measure that we present in this paper is a novel
measure, the mean phase variance (PV). The PV measures
the inter-stimulus variation in the unwrapped instantaneous
phase (IP). Essentially, the measure captures the variation in
the instantaneous frequency of the responses. The motivation
for using this measure is that we suspected that the PV would
increase as hyper-excitable pathological tissue begins to drive
and exert control over the normal oscillatory activity of the
cortex. Other measures were explored in preliminary anal-
yses, such as the phase-locking index, but the PV measure
provided more stable results.

1) Pre-processing: Preprocessing and signal conditioning
is required to ensure that noise has a minimal effect on
the analysis. The first pre-processing step was to identify
channels that had poor signal quality via visual inspec-
tion. Data from these channels were excluded from further
analysis. Next, all epochs were visually inspected for arti-
fact. Corrupted responses were excluded. Note, if inter-ictal
discharges coincided with times when the stimulation was
active, then that particular epoch was also excluded from
further analysis. Next, 5 samples either side of stimulus time
were removed from the time series, and reintroduced using
linear interpolation. This removed the stimulus artifacts [25].
Next, the data was smoothed using a 10th-order moving
average filter. This step reduced sharp fluctuations and dis-
continuities in the signal that cause ringing when digital
filtering is applied. The data was then 50 Hz notch filtered
and low-pass filtered (cut-off fc = 95 Hz) in the reverse time
direction using a 2nd-order Butterworth filter. Filtering in the
reverse time direction ensured that any ringing induced by

residual discontinuities from the stimulation appeared in the
pre-stimulus time period. The data was then resampled from
5 kHz to 1 kHz and re-referenced to a differential montage,
to remove common-mode interference and the effect of
the reference electrode. Only neighbouring pairs in the x-y
direction of the electrode, where both electrodes gave good
signal quality, were used in the new montage. Following the
preprocessing and filtering steps, the data was epoched about
the time of stimulations.

Time intervals from 5 ms to 100 ms post-stimulation were
used for analysis. Stimulation groups where greater than 50%
of the epochs had obvious artifacts were excluded in order
to gain reliable statistics from the interaction measures. This
approach yielded at least 50 responses to stimulation, to form
the excitability measures.

2) Instantaneous Phase Estimation: Estimation of the
instantaneous phase is required to compute the PV measure.
To estimate the IP, data must be filtered into narrow-band
or semi narrow-band components [26]. Accordingly, semi
narrow-band components of the iEEG were extracted via
band-pass filtering. The centre frequencies for the results
presented in this paper were 25 and 15 Hz for Patient
1 and 2, respectively, with a bandwidth of 10 Hz. Other
frequency ranges were trialled in preliminary analyses, but
these frequency ranges provided the best separation between
epileptic and non-epileptic excitability estimates (based on
visual inspection of results). The instantaneous phase, φ(n),
was estimated by

φα,γ(n) = arctan

(
Hyα,γ(n)

yα,γ(n)

)
, (1)

where y(n) is the preprocessed, bandpass filtered EEG, α
indexes the channels (in the differential montage), γ indexes
the Γ (non-corrupted) stimulations in each 10 minute period,
and n indexes the temporal sampling in the stimulation re-
sponse period. The operator H denotes the Hilbert transform.
Prior to computing the phase variance, the phase was shifted
such that φ(0) = 0 and the phase was unwrapped.

3) Phase Variance: Given the phase estimate, φ(n), the
phase variance, σ2(n), for a given iEEG channel is

σ2
α(n) =

1

Γ

Γ∑
γ=1

(
φα,γ (n)− φ̄α (n)

)2
, (2)

where φ̄α (n) is the mean of φα,γ (n) over the Γ stimulations
within the stimulation group. To reduce PV to a scalar
quantity, the mean over the stimulus response period is taken.
This gives the mean PV

χα =
1

N

N∑
n=1

σ2
α (n) , (3)

where N is the number of samples in the response period.

III. RESULTS
In this section the results are presented, where we compare

the PV excitability measure to epileptiform events. Note
that all data was marked independently by an experienced
neurophysiologist who was blinded to the signal analyses.
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Fig. 1. The relationship of the excitability measure to the rate of inter-ictal
discharges. A) The excitability measure for all channels over time. Warmer
colours indicate higher PV value. The white space indicates where data was
excluded due to noise or the channels were not recorded. B) The rate of
epileptic discharges (per 10 min). C) The PV excitability estimate for a
focal channel. D) The average excitability across all channels.

A. Patient 1 - Excitability and Inter-Ictal Discharges

For this patient we relate the PV measure for cortical
excitability to the rate of inter-ictal epileptiform discharges.
Stimuli were delivered to this patient for approximately
13hrs. During this time no clinical seizures occurred. Fig-
ure 1 shows the results from the analyses for all channel
pairs. Figure 1 B shows the number of inter-ictal discharges
(per 10 min block) over time. Figure 1 C shows the PV
measure for a focal channel. Figure 1 D shows the average
(across channels) PV measure, providing a global measure.
The profile of the excitability measure follows a strikingly
similar shape to the rate of discharges. This result provides
evidence that the method was successful in tracking excitabil-
ity for this patient. This holds under the assumption that the
rate of discharges is proportional to the excitability level of
the cortex.

B. Patient 2 - Excitability and a Clinical Epileptic Seizure

For this patient we relate the PV measure to sleep and
an epileptic seizure. Figure 2 shows the results over a 23 hr
period. The measure gave a stable output for the initial 12 hrs
of stimulation when the patient was awake. During sleep, the
phase variance increased. After waking and a few hours prior
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Fig. 2. The relationship between the excitability measure to sleep and a
seizure. A) Excitability measurement for all channels over the experimental
duration. Warmer colors indicate a higher PV value. The white spaces
indicate where data was excluded due to noise or the channels were not
recorded. B) The average excitability across all channels. The blue lines
mark the boundary of a sleep period and the red line marks the onset of an
epileptic seizure.

to a seizure occurring, the phase variance began to decrease.
We suspect that the epileptic tissue had begun to take over
the oscillatory activity in the cortex at this stage. The phase
variance continued to decrease and was lowest at the time of
the seizure. This result clearly demonstrates the potential for
our method to measure excitability and anticipate seizures.

IV. DISCUSSION

This paper introduces a new method for tracking cortical
excitability using an electrical probing stimulus. This work
builds on other studies that use an active approach for
measuring excitability, providing evidence that the use of an
input stimulus may improve seizure anticipation algorithms.
The current study is novel with respect to Kalitzin et al.[17];
they used steady-state responses from the mesial temporal
lobe, where we use single pulse stimulation delivered to the
neocortex. The study is novel with respect to Badawy et
al. [11], as stimuli are targeted directly to the epileptic focus,
and a more local measure of excitability is estimated.

A major benefit in using a single pulse input to track
cortical excitability is the ability to average the responses
to improve the signal-to-noise ratio (SNR). The improved
SNR overcomes a major challenge in analyzing spontaneous
EEG, where it is difficult to elucidate whether fluctuations
in features are due to changes in excitability, spurious
fluctuations from normal brain processes, or even noise.

A possible concern when using electrical stimulation for
measuring excitability is safety. This issue was raised in
response to the Kalitzin study [27]. In this regard, the authors
would like to point out that the patients did not have any
percept of the stimulus at any time during the experiments
(including other preliminary studies not reported in this

1646



paper). Further to this, the amount of charge delivered with
the single pulse paradigm is less than scheduled therapeutic
stimulators (see [28] for example).

Results from Patient 1 show an increase in the PV without
the occurrence of seizures. This provides evidence that high
excitability may not be a sufficient condition for seizures.
However, high excitability may lead to a higher likelihood
of seizures. This has implications for the standard seizure
prediction framework, where false positives are penalized.
The result for Patient 2 shows that the PV measure is
consistently high during sleep, low prior to the seizure, and at
the minimum during the seizure. Although we have a modest
N of 1, this exciting result provides a proof-of-principal for
our probing method of measuring excitability for seizure
anticipation. The authors expect that the PV measure will
vary across patients, as evidenced by the difference in the
magnitudes across two patients in this study.

Future work should be focused on developing stimulation
techniques to extract the maximum amount of information.
For example, it is unclear whether stimuli should be targeted
to the seizure focus or more remote cortical areas. Along
similar lines, other features (besides the PV measure) should
be explored to obtain more information about the excitability
levels. Furthermore, the amount of information in the neural
response may be maximized by incorporating a model-based
analysis method, where estimated parameters will have a
physiological meaning [29]. In the longer-term, we intend
to extend this study and incorporate this technology into an
ambulatory device. Now our focus is on further validation
on a larger patient cohort.
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