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Abstract— Analysis of gait patterns in children is useful for
the study of maturation of locomotor control. In this paper, we
utilized the Parzen-window method to estimate the probability
density functions (PDFs) of the stride interval for 50 children.
With the estimated PDFs, the statistical measures, i.e., averaged
stride interval (ASI), variation of stride interval (VSI), PDF
skewness (SK), and PDF kurtosis (KU), were computed for the
gait maturation in three age groups (aged 3–5 years, 6–8 years,
and 10–14 years) of young children. The results indicated that
the ASI and VSI values are significantly different between the
three age groups. The VSI is decreased rapidly until 8 years
of age, and then continues to be decreased at a slower rate.
The SK values of the PDFs for all of the three age groups are
positive, which shows a slight imbalance in the stride interval
distribution within each age group. In addition, the decrease of
the KU values of the PDFs is age-dependent, which suggests the
effects of the musculo-skeletal growth on the gait maturation
in young children.

I. INTRODUCTION

The study of the early development of human mobility
helps physiologists and neuroscientists understand the mat-
uration of children’s gait. According to Sutherland [1], an
infant is able to sit upright at about 6 months after birth,
begins to crawl after 9 months, and walks with immature
control of posture at around 12 months. The gait in young
children about 3 years old will become relatively mature,
with a more stable walking pattern [2]. The findings of Beck
et al. [3] suggested that the temporal and distance parameters
in children were fixed by the age of 4 years. Norlin et al.
[4], however, included a sample of 230 individuals from 3
to 16 years, and reported that the gait had not matured by
the age of 8 years. Nonetheless, a key unanswered question
is whether subtle changes in gait unsteadiness and stride-to-
stride dynamics also occur in adolescents.

When young children first learn to walk, immature control
of posture and gait results in large stride-to-stride fluctuations
[5]. Some studies reported that walking variability decreases
between childhood and adulthood [6], [7]. Hausdorff et al.
[6] applied the fractal analysis method to study the stride-to-
stride change in adolescents, and reported that the temporal
structure of stride dynamics was associated with long-range,
fractal organization. As Shumway-Cook and Woollacott sug-
gested [8], analysis of the stride dynamics may provide
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a window into the development of neuromuscular control
in children, but further quantitative studies still call for
more computational tools to describe the mature of gait in
children. The aim of the present study was to characterize the
development of mature stride dynamics in young children,
using statistical parameters and probability density functions.

II. METHODS

A. Subjects

The gait database was obtained from the web page of
PhysioNet [9]. There were 50 healthy children participants
(aged 3–14 years, 25 boys and 25 girls) recruited from the
local community in Boston, MA, USA [6]. The numbers
of the subjects are 14, 21, and 15, for the 3- to 5-year-
old, 6- to 8-year-old, and 10- to 14-year-old age groups,
respectively. The children’s parents were requested to provide
informed written consent. None of these children had a
history of neurological, cardiovascular, or musculoskeletal
disorders [6].

B. Experiment Protocol

According to Hausdorff et al. [6], the children subjects
were instructed to walk at their normal pace around a 400-
m running track for 8 min. An investigator walked slightly
behind each subject during the ambulation. Two ultrathin
pressure-sensitive switches [10] were placed in each subject’s
right shoe, in order to record the force applied to the ground.
The temporal signals were digitized by an on-board analog-
to-digital converter with the sampling rate of 300 Hz and
12-bit resolution per sample, and then stored in a recorder
(dimensions: 5.5× 2× 9 cm; weight: 0.1 kg). The recorder
was worn on the ankle cuff of each foot and held in place
with a wallet on the ankle. The time series of stride interval
were obtained with the pre-processing algorithm proposed
by Hausdorff et al. [10].

We excluded the samples of the stride interval recorded
in the first 1 min and the last 5 s, to minimize the start-
up or ending effects of walking posture. A median filter
[11] was applied to detect the outliers that were 3 standard
deviations (SDs) in amplitude greater than the median value
in the time series of stride interval. According to the well-
known “three-sigma rule” [12], about 99.7% of the normally
distributed probability values lies within 3-SD distance from
the mean, which implies the outliers only occur with a small
probability. The outliers detected, together with one stride
before or after the outliers, were considered to be associated
with the pauses during the gait monitoring. Therefore, we
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removed these outlier samples of stride interval before the
gait analysis.

Figure 1 illustrates the outlier-free stride-to-stride interval
time series of the children in three different age groups.
Because we have eliminated the start-up effects, the first
stride in each time series was made from the second minute
in the 8-min monitoring.
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Fig. 1. Outlier-free time series of stride interval of the children (a) aged
47 months (in the group aged 3–5 years), (b) aged 82 months (in the group
aged 6–8 years), and (c) aged 130 months (in the group aged 10–14 years),
respectively. The first strides in (a)–(c) start after the start-up 1 min.

C. Gait analysis

1) Probability density function (PDF) estimation: In the
present study, we first established the histogram as a PDF
reference for each outlier-free stride interval time series. The
histogram of stride interval was computed with a total of
B bins, which could be used to calculate the probability of
occurrence with B containers of equal length in the amplitude
range. By following the choice of Scott’s [13], the optimal
number of bins that can minimize the mean squared error
between the estimated histogram and the Gaussian density
function was obtained as

B = ⌈ (gmax −gmin)

3.49 s n−1/3 ⌉, (1)

where s and n represent the SD and the number of samples in
the stride interval time series, respectively; the highest and
lowest values of stride interval g are denoted as gmax and
gmin, respectively; and the operator ⌈·⌉ rounds the number
of bins toward the nearest integer greater than or equal to it.

For each subject, we used the Parzen-window method [14]
to estimate the PDF of stride interval from the outlier-free
time series. Given a M-length stride interval time series,
{gm}, m = 1,2, · · · ,M, the estimated PDF p̂(g) can be
expressed as [15]

p̂(g) =
1
M

M

∑
m=1

ω (g−gm), (2)

where ω(·) is a window function that integrates to unity. The
Gaussian window function was used to estimate the Parzen-
window PDF of stride interval, i.e.,

ω(g−gm) =
1

σP
√

2π
exp

[
−(g−gm)

2

2σ2
P

]
, (3)

where σP represents the spread parameter that determines the
width of a Gaussian window, the center of which is located
at gm [16], [17]. In order to determine the optimal spread
parameter, the Parzen-window PDF was arranged with the
same resolution as the histogram, i.e., the estimated probabil-
ity density, p̂(gb), b = 1,2, · · · ,B, was also represented with
B bins. Then the optimal spread parameter can be obtained
by minimizing the mean-squared error (MSE) between the
Parzen-window PDF, p̂(gb), and the histogram, ĥ(gb), i.e.,
min

{
1
B ∑B

b=1 [p̂(g
b)− ĥ(gb)]

2
}

. The optimal value of σP was
set to be 0.01 in accordance with the minimization of MSE
criterion.

2) Statistical parameters: There were four statistical pa-
rameters, in particular, averaged stride interval (ASI), vari-
ation of stride interval (VSI), skewness (SK), and kurtosis
(KU), computed using the Parzen-window PDF estimated.
The ASI and VSI are the mean and SD values of stride
interval, i.e.,

µ =
B

∑
b=1

gb p̂(gb), (4)

and

σ =

√
B

∑
b=1

(gb −µ)2 p̂(gb). (5)

The SK and KU are two parameters that usually measure
the asymmetry and peakedness of the PDF [18]. The SK and
KU can be computed from the moments of the PDF as

SK =
m3

(m2)3/2 , (6)

and
KU =

m4

(m2)2 , (7)

where m j represents the jth central moment of the PDF,
defined as [19]

m j =
B

∑
b=1

(
gb −µ

) j
p̂(gb). (8)

III. RESULTS

As shown in Figure 2, the degree of stride fluctuations
is highest in the youngest child (aged 3–5 years), whereas
the stride-to-stride variability of the other two children (aged
6–8 years and 10–14 years) becomes much smaller. It can
be observed that the spread of the PDF of the child aged
47 months is much wider than those of the older children
aged 82 and 130 months, respectively. The mean value of the
stride interval was 0.897 s for the children aged 130 months,
the amplitude of which was larger than those of the younger
children (0.902 and 1.001 s for aged 47 and 82 months,
respectively).
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Fig. 2. Histograms and Parzen-window probability density functions
(PDFs) estimated for the stride interval time series in Figure 1: of the
children (a) aged 47 months (in the group aged 3–5 years), (b) aged 82
months (in the group aged 6–8 years), and (c) aged 130 months (in the
group aged 10–14 years), respectively. Gaussian PDFs (dashed curves) are
fit with the Gaussian distributions, the mean and variance parameters of
which are equal to those of the corresponding histograms.

The values of the ASI and VSI computed from the Parzen-
window PDFs for the children in different age groups are
provided in Figure 3. We may observe that both the ASI and
VSI values are age-dependent. The ASI value increases when
the children grow up, whereas the VSI value decreases with
age. The ASI value for the 6- to 8-year-old age group is about
0.056 s higher (p-value< 0.01) than that for the 3- to 5-year-
old age group, and the ASI value is increased by 0.099 s
(p-value< 0.0001) comparing the 10- to 14-year-old children
with that for the 6- to 8-year-old children. In the meanwhile,
the VSI is decreased by 0.023 s (p-value < 0.0001) in the
children aged from 3 years to 8 years, and then continues to
be decreased by 0.008 s (p-value < 0.001) until the children
are 14 years old. Such results suggested that the children are
more and more skilled to modulate large strides during the
course of musculo-skeletal growth, and the ability to control
stable strides is significantly improved in the children aged
3–8 years. It can therefore be inferred that the locomotor
control system in children aged 3–8 years is still rapidly
developing, and will reach maturity until they are 14 years
old, when their gait patterns become very close to those of
healthy adults [6].

The SK and KU results were shown in Figure 4. The
SK values computed from both the histograms and Parzen-
window PDFs were positive for the three age groups. The
right-skewed PDFs (positive SK values) indicated that the
mass of the distribution is located on the left side of the
figure, which implies that more than a half of the stride
interval samples are lower in amplitude than the mean of
the PDF. It is also worth noting that the SK values first
decreased rapidly from 0.31 (3–5 years old) to 0.14 (6–
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Fig. 3. Bar graphics of (a) averaged stride interval (ASI) and (b) variation
stride interval (VSI) computed from the Parzen-window probability density
functions (PDFs) of the children in the groups aged 3–5 years, 6–8 years,
and 10–14 years, respectively. Vertical lines on the tops of the bars denote
the standard deviation (SD) values. The values (mean ± SD) of the bars for
the children of 3–5 years old (ASI: 0.904±0.041 s, VSI: 0.058±0.015 s),
of 6–8 years old (ASI: 0.96±0.056 s, VSI: 0.035±0.009 s), and of 10–14
years old (ASI: 1.059±0.063 s, VSI: 0.027±0.006 s).

8 years old), and then continued to decrease at a slower
rate until 14 years of age. It can be inferred that the stride
interval distribution was imbalanced within an age group, but
such an imbalance would be meliorated when the children
grow up. The SK results demostrated our inference about
the development process of the locomotor control system in
young children described above.

The KU results are provided in Figure 4 (b). It can be
observed that the KU values of the PDFs are higher than 3.0
(the typical value of a Gaussian PDF) when the children are
3–5 years old, are very close to 3.0 when the children are
6–8 years old, and are between 2.41 (the typical value of
a raised cosine PDF) and 3.0 when the children are 10–14
years old. Such results indicated that the PDF curves become
smoother and smoother during the course of musculo-skeletal
growth in children, and the distributions of the stride-to-
stride interval in children are not heavily concentrated on the
means of the corresponding PDFs. It may be inferred that the
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musculo-skeletal growth enable the children to better control
the strides at different speeds.
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Fig. 4. Bar graphics of the mean values of (a) skewness (SK) and
(b) kurtosis (KU) computed from the histograms and the Parzen-window
probability density functions (PDFs) of the 3- to 5-year-old, 6- to 8-year-
old, and 10- to 14-year-old age groups, respectively.

IV. CONCLUSION

According to the results obtained in the present study, we
found that the gait continued to change up until at least the
age of 14 years. The mean of stride interval was significantly
increased with age, from 0.904 s in the youngest group to
1.059 s in the oldest group. The gait variability, in terms
of VSI, is decreased rapidly until 8 years of age, and then
continues to be decreased at a slower rate. The SK results
indicated an imbalance in the stride interval distribution
in young children, but could be meliorated later. Further
results showed that the KU values will decrease with age,
and such observations suggested that the musculo-skeletal
growth enables the children to modulate a gait cadence with
ease. The SK and KU results demonstrate that the Parzen-
window PDF estimation method is also useful to quantita-
tively characterize the gait maturation in young children. The
statistical parameters obtained in the present study could
also be regarded as the dominant features for the pattern

analysis of gait maturation. The future work will focus on
the applications of computational intelligence techniques for
the automatic analysis of gait patterns in young children [20].
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