
  

  

Abstract— Individualizing a neurorehabilitation training 

protocol requires understanding the performance of subjects 

with various capabilities under different task settings. We use 

multivariate regression to evaluate the performance of subjects 

with stroke-induced hemiparesis in trajectory tracking tasks 

using a force-reflecting joystick. A nonlinear effect was 

consistently shown in both dimensions of force field strength 

and impairment level for selected kinematic performance 

measures, with greatest sensitivity at lower force fields. This 

suggests that the form of a force field may play a different 

“role” for subjects with various impairment levels, and 

confirms that to achieve optimized therapeutic benefit, it is 

necessary to personalize interfaces. 

I. INTRODUCTION 

IN conventional therapy, therapists routinely customize and 

adjust the focus of therapeutic intervention in response to the 

client’s abilities and performance. A review of clinical stroke 

trials [1] notes that protocols should ideally be personalized 

for a given patient based on specific deficit, interests and 

capabilities. Since robotic devices can provide a more 

objective, precise and repeatable training dosage (e.g. force, 

intensity, range of motion) than rehabilitation practitioners 

are able to, it is suggested that there is a great potential to 

prescribe a more personalized robotic therapy protocol for a 

given client. However, few robotic therapy studies to date 

either use a customized intervention protocol or investigate 

personalized options that are based on evaluating the 

performance of subjects with various impairment levels. 

Perhaps the greater research challenge in customizing a 

robotic therapy protocol relates to what and how to 

personalize. This suggests the importance of evaluating 

performance through goal-directed tasks that vary key 

interface parameters (e.g. active workspace, force 

magnitude, intensity), while involving subjects with different 

impairment levels.  Such results may potentially provide a 

quantitative basis for optimizing these parameters in 

personalized intervention protocols.  
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Trajectory-tracking tasks require common components 

involved in both perception-action coupling and functional 

motor tasks: perception of environmental constraints, motor 

planning and execution, and corrective monitoring of 

performance including explicit feedback [2]. Several studies 

have already evaluated the assessment capability of 

trajectory tracking tasks for subjects with stroke-induced 

impairments. It has been demonstrated that the motor 

functional level of subjects and their performance in 

trajectory-tracking tasks are closely related [3]; furthermore, 

a kinematic metric (root mean square error, RMSE) derived 

from trajectory tracking tasks has been demonstrated as a 

reliable, sensitive assessment tool of the upper-extremity 

motor function in subjects with stroke-induced hemiparesis 

[2]. In summary, trajectory tracking clearly affords an 

effective approach and potentially improved sensitivity for 

assessing upper-extremity motor function for personalized 

task settings. 

The aim of this study is to evaluate the movement features 

of human subjects with various levels of stroke-induced 

impairment for a trajectory-tracking task performed under 

different task settings. A multivariate model is used to 

summarize the collective performance of subjects with 

stroke-induced hemiparesis in trajectory tracking task under 

varied parameters of force and tracking speed. Our primary 

goal is to quantify the performance of people with induced 

hemiparesis in trajectory tracking tasks using various settings 

for a force reflecting joystick device. 

 

TABLE I. SUMMARY OF PARTICIPANTS INFORMATION 

Subject  Age Gender Impaired side UE-FM (66) 

S1 52 M L 27 

S2 56 F L 27 

S3 60 M R 33 

S4 42 M R 35 

S5 51 F L 36 

S6 55 F L 45 

S7 77 F L 47 

S8 63 M L 53 

9 56 F R 55 

S10 57 F L 61 

S11 58 F R 63 

S12 58 M R 65 

Mean 

(STD) 

57.1 

(8.2) 
  45.6 (13.9) 
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A. Study protocol 

Twelve subjects with stroke-induced hemiplegia 

participated in this study. The upper extremity motor control 

portion of the Fugl-Meyer (UE-FM) assessment test ([4]) 

was used to assess the level of upper-extremity motor 

impairment of subjects (maximum of 66), as summarized in  

Table I. Exclusion criteria were being under twelve months 

post-incident, UE-FM score lower than 20, cognitive 

dysfunction sufficient to limit comprehension of the 

experimental tasks, and severe concurrent medical problems 

(e.g. shoulder pain, visual neglect) sufficient to preclude the 

completion of the goal-directed tasks across the conventional 

joystick workspace. This study was approved by the 

Institutional Review Board (IRB) at Marquette University 

and all the subjects gave informed consent. 

A Windows-based human performance assessment package 

called “UniTherapy” [5], interfaced with a conventional 

force-reflecting joystick, was used as the experimental 

platform. As shown in Fig. 1, all subjects were asked to 

complete the trajectory tracking task under various force 

field settings: follow the continuously moving target along a 

circle pattern and stay within the target window as much as 

possible. Tasks were repeated with a spring-like force field 

which is generated by: 

, , ,*(Subject Target )x y x y x yF K= −
 

where Fx,y represents the force, K represents the spring index, 

Subjectx,y represents the subject position, and Targetx,y 

represents the target position.  All subjects completed 

continuous circle tracking tasks under total 15 settings: the 

repeat of five force-field settings obtained by adjusting the K 

value of the force-feedback joystick device (100%, 50%, 0, -

50%, -100%.) with each of three target speed settings (slow 

of 20 second/circle, medium of 12 second/circle, and fast of 

8 second/circle). For the force settings, the unit of force is 

the maximum spring force the joystick can yield, with a 

positive value providing assistance and a negative value 

providing resistance. The task was repeated 3 times under 

each setting, with the sequence of these task settings being 

randomly arranged by the experimental protocol in order to 

minimize any “learning effect” on the result. 

B. Data analysis 

A number of kinematic performance metrics examining 

accuracy [6], curvature [7], and so on have been developed 

to characterize movement features in trajectory tracking. The 

following are presented here: 

• Percentage Time in Target window (PTT): The percentage 

of the time the human subject staying within the target 

window. It is used to characterize accuracy and steadiness. 

• Root Mean Square Error (RMSE): The squared root of the 

mean-squared distance from the subject position to the 

target position. It is a measure of accuracy. 

• Deviation: The mean of the perpendicular distance from 

the subject position to the target line within the movement 

time. It is a measure of curvature. 

A multivariate regression model was used to fit the results 

for these three selected performance metrics (e.g. PTT, 

RMSE, and Deviation) across subjects and tasks within the 

same target speed settings, with independent variables being 

UE-FM score and the force field settings. Coefficient of 

determination (R
2
) was used to select the order of the 

regression model and further evaluate the fitness of the 

regression model to the performance results. The 3
rd

 order 

polynomial model was chosen after evaluating the R
2
 value 

with the different order (e.g. linear, 2
nd

, 3
rd

, 4
th

 order) 

models, with the consideration of both fitness and model 

simplicity. Of note is that the average R
2
 value of the 3

rd
-

ordermodels across three metrics was 99.5% of the R
2
 value 

of the 4
th-

-order models, while the average R
2
 value of the 

2
nd

-order models across three metrics was only 90.5% of the 

R
2
 value of the 3

rd
-order models. 

 

 
Fig. 1. The example subject position and target position data for continuous 

circle tracking under spring assistance. The sample is from an able-bodied 

subject whose data is not reported here. 

II. RESULTS 

A. Percentage Time in Target window (PTT) 

As shown in Fig. 2, regression models fit PTT results 

better under slow target speed settings. In both dimensions of 

force-field and UE-FM, the model fits show saturation at 

both ends and greater sensitivity in the middle range, with 

the sensitive range varying under different target speed 

settings. Across models, there is a significant difference in 

PTT between low and medium/high speed, which suggests 

that accuracy and stability improved with lower target 

speeds.  Table II provides 3
rd

-order polynomial regression 

equation fits for the PTT results under slow, medium and fast 

target speed settings, with independent variables being Force 

and UE-FM.  
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TABLE II: Regression equations for PTT*  

Speed 3rd-order polynomial regression: 

Slow PTT = 56.48-3.554*u+3.699*f+0.0997*u^2-9.060 *10-

6*f^2-7.159*10-4*u^3-1.267*10-5*f^3  

Medium PTT = 57.27- .245*u+0.2908*f+0.1193*u^2+ 

1.9855*10-4*f^2-9.439*10-4*u^3-1.267*10-5*f^3 

Fast PTT = 63.84- 244*u+0.2062*f+0.09930*u^2+ 

2.852*10-4*f^2-6.704*10-4*u^3-6.865*10-6*v^3  

* u is the UE-FM score of the subject and f is the force magnitude. 

 

Fig. 2. Regression models to fit PTT results as a function of Force-Field and 

UE-FM, under slow speed (A, R2=0.86), medium speed (B, R2=0.74), and 

fast speed (C, R2=0.67) settings. All 3 models are overlapped in (D), 

highlighting Force-Field axis. The thicker lines on the regression surface 

represent [UE-FM = 30, 40, 50, 60; Force = -50, 0, 50]. 

B. Root Mean Square Error (RMSE) 

As shown in Fig. 3, regression models fit RMSE results 

better under slow target speed settings. General findings for 

all three models are that in both dimensions of force and UE-

FM, the models saturated in both ends and showed better 

sensitivity in the middle (low-to-moderate force) range, with 

the sensitive range varying under different target speed 

settings.  Table III provides 3
rd

-order polynomial regression 

equations that are used to fit the RMSE results under slow, 

medium and fast target speed settings, with independent 

variables being Force and UE-FM. 

 TABLE III: Regression equations for RMSE*  

Speed 3rd-order polynomial regression: 

Slow RMSE = -26.01+3.617*u-0.1041*f-0.09416*u^2+ 

0.0007287*f^2+6.948*10-4*u^3-1.408*10-6*f^3 

Medium RMSE = -74.92+7.425*u-0.1657*f-0.1844*u^2+ 

6.777*10-4*f^2+1.375*10-3*u^3+5.574*10-6*f^3 

Fast RMSE = -55.44+5.929*u-0.1636*f-0.1439*u^2+ 

4.314*10-4*f^2+1.039*10-3*u^3+4.633*10-6*f^3  

* u is the UE-FM score of the subject and f is the force magnitude. 

  

 
Fig. 3. Regression models to fit RMSE results as a function of Force-Field 

and UE-FM, under slow speed (A, R2=0.69), medium speed (B, R2=-.60), 

and fast speed (C, R2=0.60) settings. All three regression models are 

overlapped in (D). The thicker lines on the regression surface are presented 

in the case of [UE-FM = 30, 40, 50, 60; Force = -50%, 0%, 50%].  

C. Deviation 

As shown in Fig. 4, the general findings for deviation are 

that in the dimension of force field, the models saturated in 

the assistance end and showed better sensitivity in the 

resistance end under different target speed settings. This 

suggests that the deviation metric is more sensitive to the 

resistance force field, and less sensitive to the magnitude of 

the assistance force field (i.e., even mild force-field 

assistance is beneficial for this metric). Table IV provides 

3
rd

-order polynomial regression models that are used to fit 

the curvature results under slow, medium and fast target 

speed settings, with independent variables being Force and 

UE-FM.  
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TABLE IV: Regression equations for Deviation*  

Speed 3rd-order polynomial regression: 

Slow Deviation = -21.73+1.902*u-0.03354*f-0.04501*u^2+ 

3.489*10-4*f^2+3.172*10-4*u^3-1.022*10-6*f^3 

Medium Deviation = -45.85+3.671*u-0.04797*f-0.08473*u^2+ 

3.328*10-4*f^2+6.010*10-4*u^3+2.639*10-7*f^3 

Fast Deviation = -31.67+2.771*u-0.06169*f-0.06386*u^2+ 

2.545*10-4*f^2+4.409*10-4*u^3+1.511*10-6*f^3  

* u is the UE-FM score of the subject and f is the force magnitude. 

 

 
Fig. 4. Regression models to fit Deviation results as a function of Force and 

UE-FM, under slow speed (A, R2=0.59), medium speed (B, R2=0.58), and 

fast speed (C, R2=0.61) settings. All three regression models are overlapped 

(D). The thicker lines on the regression surface are presented in the case of 

[UE-FM = 30, 40, 50, 60; Force = -50%, 0%, 50%].  

III. DISCUSSION AND CONCLUSION 

Regression models of selected kinematic metrics fit the 

results for a group of subjects with remarkably diverse 

abilities quite well, as measured by coefficient of 

determination (R
2
) within the range [0.582, 0.855]. These 

regression models showed non-linear effects in both force 

field magnitude and impairment level on these metrics with 

various sensitive and saturating regions, suggesting that even 

small “assist” and “resist” force-fields affect task 

performance. Interestingly, 2 of the 3 metrics (RMSE, 

Deviation) were less sensitive to speed, with PTT sensitive 

in a predictable way.  

As might be expected, across subjects with various 

impairment levels, providing assistance force will improve 

the performance of accuracy (PTT, RMSE), steadiness 

(PTT) and path deviation (deviation) in the trajectory 

tracking tasks, while the resistance force will decrease 

performance of these movement features. For both PTT and 

RMSE, the regression models saturated in both ends and 

showed better sensitivity in the middle force range, with the 

sensitive range varying under different tracking speed 

settings.  

These findings suggest that the magnitude of force 

assistance generated by commercially available joysticks, 

although of a smaller scale compared with the large 

“rehabilitator” robotics, can significantly vary movement 

performance features across human subjects. Furthermore, 

the clear trends towards saturation shown at the end of 

assistance force settings suggests that any additional increase 

of the force would have yielded diminishing sensitivity in 

terms of changes in performance (e.g. accuracy, steadiness). 

For deviation, the regression fits for force sensitivity all 

saturated in the assistance end and then showed better 

sensitivity in the resistance end across different tracking 

speed settings. This finding suggests that assistance force 

won’t improve the path deviation performance significantly 

across human subjects with various impairment levels. 

However, resistance force may continue to cause significant 

changes in the performance of path deviation.  

An overall implication is that small motors, such as those 

used in the mass-marketed commercial force-reflecting 

joysticks, are sufficient for providing forces within the range 

where there is highest sensitivity to performance variation. 

This conclusion should be taken cautiously, with the 

consideration of the various sources of the error (e.g. force, 

UE-FM scores) and also that the protocols only included a 

limited number of force levels and a self-selected location 

for the joystick relative to the participant (which was 

maintained throughout the session). 

More broadly, our results suggest that the form of a haptic 

interface plays a different “role” for subjects with various 

impairment levels. This helps confirm that it is necessary to 

customize the interface based on an individual’s impairment 

level. 
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