
  

  

Abstract—Patient-specific simulation of heart (dys)function 
aimed at personalizing cardiac therapy are hampered by the 
absence of in vivo imaging technology for clinically acquiring 
myocardial fiber orientations. In this research, we develop a 
methodology to predict ventricular fiber orientations of a 
patient heart, given the geometry of the heart and an atlas. We 
test the methodology by comparing the estimated fiber 
orientations with measured ones, and by quantifying the effect 
of the estimation error on outcomes of electrophysiological 
simulations, in normal and failing canine hearts. The new 
insights obtained from the project will pave the way for the 
development of patient-specific models of the heart that can aid 
physicians in personalized diagnosis and decisions regarding 
electrophysiological interventions. 

I. INTRODUCTION 
HE computational approach is becoming an essential 
tool in the comprehensive understanding of the function 

of the heart in health and disease. Whole-heart simulations 
today are based on cardiac models that describe the 
geometry and fibrous structure derived from representative 
hearts [1]. However, for the computational approach to be 
directly applicable in the clinical environment, it is 
imperative that the models be patient-specific, i.e. the 
models must be based on the specific architecture and 
electrophysiological or electromechanical properties of the 
patient’s diseased heart. Simulation with such models will 
aid physicians to arrive at highly personalized decisions for 
electrophysiological interventions as well as prophylaxis, 
thereby dramatically improving cardiac health care. 

Creation of realistic cardiac models requires the 
acquisition of the geometry and fiber structure of a patient 
heart. With recent advances in medical imaging, it is now 
feasible to acquire the geometry of a patient heart, including 
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structural remodeling such as infarction, in vivo with high 
resolution using magnetic resonance imaging (MRI) and 
computed tomography (CT) technologies. However, there is 
no practical method for acquiring fiber structure of a patient 
heart in vivo. Diffusion tensor (DT) MRI, the only technique 
to acquire fiber orientations of the intact heart, is not widely 
available in vivo due to certain limitations [2]. Thus 
difficulties in acquiring cardiac fiber structure in vivo 
presently impede the application of electrophysiological and 
electromechanical cardiac simulations in clinical setting. The 
objective of this research was to directly address this need. 

We hypothesize that ventricular fiber orientations of a 
heart can be accurately predicted given the geometry of the 
heart and an atlas, where the atlas is a heart whose geometry 
and fiber orientations are available. Accordingly, we use 
state of the art techniques to develop a methodology for 
estimation of cardiac fiber orientations in vivo, and test the 
hypothesis. We evaluate the performance of the proposed 
methodology by quantifying the estimation error, and 
measuring the effect of this error on local electrical 
activation maps obtained from simulations of sinus rhythm. 

II. METHODS 

A. Methodology for Myocardial Fiber Orientations 
Estimation 
The central idea of our fiber estimation methodology is to 

exploit similarities in fiber orientations, relative to geometry, 
between different hearts in order to approximate the fiber 
structure of a heart for which only the geometry information 
is available. In the following subsections, we describe the 
proposed methodology by demonstrating how the estimation 
was performed for an example patient who was scanned 
using in vivo CT. 

1) Atlas Ventricular Geometry and Fiber Orientations 
Reconstruction 

Geometry and fiber orientations of the atlas were 
extracted from raw data acquired ex vivo using high 
resolution (0.4297×0.4297×1mm3) structural MRI and 
DTMRI of a normal human heart, respectively [3]. From the 
acquired structural image, only the ventricular myocardium 
of the atlas was extracted by fitting, for each short-axis slice, 
closed splines through a set of landmark points placed semi-
automatically along the epicardial and endocardial 
boundaries in the slice (Fig. 1A). The placement of landmark 
points was performed manually for a number of slices that 
are evenly distributed, with an inter-slice spacing of about 
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10mm in the image. The landmark points f
slices were obtained automatically by linea
the manually identified points. A gener
formulation of this interpolation technique h
elsewhere [3], where this technique was use
the atrio-ventricular boundary in an ex-viv
heart image. Figs. 1B and 1C show the 3
fiber orientations of the extracted atlas ventr
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reconstructed from an in vivo CT 
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atlas. However, the patient image was re-
reconstruction such that the in-plane 
0.4297×0.4297mm3 as in the atlas. Similarl
slices for which landmarks are manually 
interval of out-of-plane interpolation were
the segmented patient heart image had a s
1mm. Fig. 2, panels A and B illustrate the p
geometry reconstruction. 

3) Atlas Ventricular Geometry Deforma

Following the reconstruction of the patien
atlas ventricular image was deformed to m
geometry image, in two steps. The first step
transformation based on a set of man
landmark points including the apex and RV
as illustrated in Fig. 2, C and D. In the 
affine-transformed atlas ventricles were fur
match the patient geometry, using la
diffeomorphic metric mapping (LDDMM)
non-linear image registration algorithm 
diffeomorphic transformations between im
illustrates the LDDMM transformation of t
the patient geometry; the match is remarkab

Fig. 2. Application of the fiber orientation estimatio
an example patient heart image. (A) The epic
endocardial (green and magenta) splines, an
landmarks (yellow) overlaid on an image slice. (B)
in 3D. (C) Superimposition of ventricles of atlas (
1B) and patient. (D) Patient ventricles and the affine
ventricles. (E) Patient ventricles and LDDMM-
ventricles. (F) Estimated patient ventricular fiber ori

Fig. 1. Geometry and fiber orientations of the atlas v
epicardial (red) and endocardial (green and mage
corresponding landmarks (yellow) overlaid on an ex
atlas image. (B) The atlas ventricles in 3D. (C
orientations. 
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4) Atlas Ventricular Fiber Orie
In the final phase, the transforma

matching and the deformation 
transformation were applied in s
DTMR image of the atlas to obtain a
ventricular fiber orientations. The
DTMR image consisted of spatial 
voxels in accordance with the spat
geometry images, and re-orientatio
orientation of the DTs was pe
preservation of principal directions m
of the patient fiber orientations 
morphed atlas DTMR image by 
eigenvector of the DTs. Fig. 2F 
visualization of the estimated fiber o
ventricles. 

B. Measurement of Estimation Er
Predicting Electrophysiological A
We tested our methodology on

baseline fiber orientations were 
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tests were performed on canine hear
from a total of six normal and three
of which were scanned with DTM
312.5×312.5×800µm3 were used. T
employed in a previous study [6] w
techniques are also described. In t
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through 6, and those segmented from
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other with the estimated fiber orientat
constructed. The heart failure models with 
fibers were denoted as models 7 to 9, 
estimated fibers as models 10 to 12. Our 
construction of heart meshes given segment
fiber orientations has been reported i
publication [3]. 
  Mathematical description of cardiac 
simulations was based on the monodoma
[8]. Passive tissue properties in the norma
were characterized with anisotropic con
values by Roberts et al. [9]. The myocyte m
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normal hearts are near the base.  
In simulations of ventricular activation in sinus rhythm 

with failing heart models, total activation times for models 
7-9 were 183, 144, and 166 ms, respectively, while for 
models 10-12, they were 187, 139, and 162ms, respectively. 
The total activation times in the failing heart models are 
longer than those in normal heart models due to the lower 
tissue conductivity values in heart failure. The failing hearts 
were also on average 29% larger than normal hearts by 
ventricular wall volume, resulting in longer paths for 
wavefront propagation and thus longer total activation times. 
The mean difference in total activation times between heart 
failure models with acquired and estimated fiber orientations 
was only 5.2ms (3.1%). These results indicate that the 
outcomes of simulation of ventricular activation in sinus 
rhythm in normal and failing canine heart models with fiber 
orientations estimated with the present methodology closely 
match those with acquired orientations.  

IV. CONCLUSION 
The goal of this project was to develop a methodology for 

estimating ventricular fiber orientations from in-vivo images 
of ventricular geometry, and to assess the accuracy of the 
estimation. Estimation was performed in normal and failing 
hearts. Our results show that predicted fiber orientations 
closely match those acquired by ex-vivo DTMR, the state-of-
the-art technique, and that activation maps generated by 
simulations of sinus rhythm using estimated fiber 
orientations are not significantly different from those using 
acquired fiber orientations. This research demonstrates 
quantitatively that, in the absence of DTMR, myocardial 
fiber orientations can be estimated from in-vivo images of 
ventricular geometry for use in simulations of cardiac 
electrophysiology and electromechanics. The proposed 
methodology is applicable to both MR and CT clinical in 
vivo images of ventricular geometry, addressing the lack of 
ability to directly acquire patient fiber orientations. 

In the past, rule-based methods, which predict fiber 
orientations using mathematical functions have been 
proposed [16]. But how well these idealized rules of 
myocyte orientation quantitatively correlate with true 
anatomy in normal and diseased hearts remains unknown. 
Also, Sundar et al. presented a technique to estimate fiber 
orientations via an elastic image transformation of an atlas 
heart [17]. However, they did not measure the effect of error 
in their estimated fiber orientations on simulations of cardiac 
function. Our research addresses the limitations of previous 
studies, and is thus an important step toward the 
development of personalized cardiac models for clinical 
applications. It must be noted, however, that the proposed 
methodology produces a nonnegligible amount of estimation 
error (~15°), and may not be applicable in the presence of 
diseases that cause fiber disarray, e.g. hypertrophy and 
ischemia. 

ACKNOWLEDGMENT 
We thank Drs. Raimond Winslow, Elliot McVeigh, and 

Patrick Helm at Johns Hopkins University for providing the 
human and the canine datasets. 

REFERENCES 
[1] N. Trayanova, "Whole heart modeling: Applications to cardiac 

electrophysiology and electromechanics," Circulation Research, vol. 
108, pp. 113 - 128, 2011. 

[2] D. E. Sosnovik, R. Wang, G. Dai, T. G. Reese, and V. J. Wedeen, 
"Diffusion mr tractography of the heart," Journal of Cardiovascular 
Magnetic Resonance, vol. 11, pp. 47 - 61, 2009. 

[3] F. Vadakkumpadan, H. Arevalo, A. J. Prassl, J. Chen, F. Kickinger, et 
al., "Image-based models of cardiac structure in health and disease," 
Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 
2, pp. 489 - 506, 2010. 

[4] M. F. Beg, M. I. Miller, and A. Trouve, "Computing large 
deformation metric mappings via geodesic flows of diffeomorphisms," 
International Journal of Computer Vision, vol. 61, pp. 139–157, 2005. 

[5] D. C. Alexander, C. Pierpaoli, P. J. Basser, and J. C. Gee, "Spatial 
transformations of diffusion tensor magnetic resonance images," IEEE 
Transactions on Medical Imaging, vol. 20, pp. 1131 - 1139, 2001. 

[6] P. A. Helm, L. Younes, M. F. Beg, D. B. Ennis, C. Leclercq, et al., 
"Evidence of structural remodeling in the dyssynchronous failing 
heart," Circulation Research, vol. 98, pp. 125 - 132, 2006. 

[7] D. F. Scollan, A. Holmes, R. Winslow, and J. Forder, "Histological 
validation of myocardial microstructure obtained from DTMRI," 
American Journal of Physiology - Heart and Circulatory Physiology, 
vol. 275, pp. H2308 - H2318, 1998. 

[8] G. Plank, L. Zhou, J. L. Greenstein, G. Plank, L. Zhou, et al., "From 
mitochondrial ion channels to arrhythmias in the heart: Computational 
techniques to bridge the spatio-temporal scales," Philosophical 
Transactions Series A, Mathematical, Physical, and Engineering 
Sciences, vol. 366, pp. 3381-3409, 2008. 

[9] D. E. Roberts and A. M. Scher, "Effect of tissue anisotropy on 
extracellular potential fields in canine myocardium in situ," 
Circulation Research, vol. 50, pp. 342 - 351, 1982. 

[10] J. Greenstein, R. Wu, S. Po, G. F. Tomaselli, and R. L. Winslow, 
"Role of the calcium-independent transient outward current i(to1) in 
shaping action potential morphology and duration," Circulation 
Research, vol. 87, pp. 1026 - 1033, 2000. 

[11] G.R. Li, C.P. Lau, A.Ducharme, J.C.Tardif, and S.Nattel, "Transmural 
action potential and ionic current remodeling in ventricles of failing 
canine hearts," American Journal of Physiology - Heart and 
Circulatory Physiology, vol. 283, pp. H1031 - H1041, 2002. 

[12] B. O'Rourke, D. Kass, G. Tomaselli, S. Kaab, R. Tunin, et al., 
"Mechanisms of altered excitation-contraction coupling in canine 
tachycardi-induced heart failure, i: Experimental studies," Circulation 
Research, vol. 84, pp. 562 - 570, 1999. 

[13] F. Akar, R. Nass, S. Hahn, E. Cingolani, M. Shah, et al., "Dynamic 
changes in conduction velocity and gap junction properties during 
development of pacing-induced heart failure," American Journal of 
Physiology - Heart and Circulatory Physiology, vol. 293, pp. H1223 - 
H1230, 2007. 

[14] V. Gurev, J. Constantino, J. J. Rice, and N. Trayanova, "Distribution 
of electromechanical delay in the ventricles:Insights from a 3d 
electromechanical model of the heart," Biophysical Journal, vol. 99, 
pp. 745-754, 2010. 

[15] M. S. Spach and R. C. Barr, "Ventricular intramural and epicardial 
potential distributions during ventricular activation and repolarization 
in the intact dog," Circulation Research, vol. 37, pp. 243 - 257, 1975. 

[16] G. Plank, R. A. Burton, P. Hales, M. Bishop, T. Mansoori, et al., 
"Generation of histo-anatomically representative models of the 
individual heart: Tools and application," Philosophical Transactions 
Series A, Mathematical, Physical, and Engineering Sciences, vol. 367, 
pp. 2257 - 2292, 2009. 

[17] H. Sundar, D. Shen, G. Biros, H. Litt, and C. Davatzikos, "Estimating 
myocardial fiber orientations by template warping," in IEEE 
International Symposium on Biomedical Imaging, Arlington, VA, 
2006, pp. 73 - 76. 

 

1675


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

