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Abstract— Since the 1970s, various automatic sleep spindles 

procedures have been implemented and presented in the 

literature. Unfortunately, their results are not easily 

comparable because the databases, the assessment methods and 

the terminologies employed are often radically different. In this 

study, we propose a systematic assessment method for any 

automatic sleep spindles detection algorithm. We apply this 

assessment method to our own automatic detection process in 

order to illustrate and legitimate its use. We obtain a global 

sensitivity of 70.20%, for a false positive proportion (relative to 

the total number of visually scored sleep spindles) of only 

26.44% (False positive rate= 1.38% and specificity = 98.62%). 

I. INTRODUCTION 

LEEP spindles (SS) consist in sinus-like bursts that 

increase and decrease progressively in amplitude, with 

minimum duration of 0.5 s (Fig. 1). Their frequencies have 

been defined between 12 and 14 Hz in the Rechtschafen and 

Kales (R&K) criteria [1]. However, this interval has been 

proved to be too narrow and it was extended in several 

studies (11.75-16Hz in [2], 11.5-15Hz in [3], 10-16Hz in 

[4]-[5], 11-16Hz in [6] and 11-15Hz in [7]). The American 

Academy of Sleep Medicine (AASM) proposed a wider 

frequency range in their new guidelines for visual sleep 

scoring: 11Hz-16Hz [8]. Neither AASM nor R&K standards 

specify an amplitude criterion as a necessary requirement for 

the definition of SS. However, many authors have suggested 

using a minimal peak to peak amplitude criterion from 5uV 

to 25uV [2]-[3], [7]. 

The Presence or absence of SS is crucial for the scoring of 

sleep, since, sleep spindles represents one of the most 

important hallmarks of stage 2. However their visual analysis 

is time-consuming and tedious since there are typically 

hundreds of spindles in a full night recording [5], [9]. 

Therefore, several automatic methods have been developed 

for their detection.  
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II. PAST WORKS 

The earliest SS detectors were based on hardware. Several 

of them have combined pass-band filters together with a 

system performing the frequency detection (by searching the 

zero crossings [2] or by using a phase-locked loop [3]). By 

adding to this process other heuristic criteria in order to 

distinguish amoung spindles, EMG artifacts and alpha 

rhythm, Fish et al. obtained a sensitivity of 96% [3]. 

After these hardware detection systems, several software 

methods have been implemented. Two main approaches 

became prevalent: those using band-pass filtering and level 

detection, and procedures employing a first stage of features 

extraction, followed by decision-making for classification. 

Concerning amplitude-based algorithms, selection of the 

threshold value is critical for the sensitivity of spindle 

detection. Traditionally, the amplitude threshold is fixed on 

the base of training recordings [6], [9]. However, we 

presently know that there is a considerable inter-subject 

variability in spindles amplitude and mean frequency, while 

sleep spindles characteristics are almost invariant from a 

night to another within an individual [10]. 

Therefore, Ray et al. and Huuponen et al. proposed to 

compute a recording-specific amplitude threshold, before 

performing the level detection. This threshold is derived 

from amplitudes distribution of some sleep spindles 

previously detected on the recording (either by an expert 

[11], or automatically thanks to spectral characteristics [9]). 

By this way, Huuponen et al. reported a sensitivity of 73.5% 

and a specificity of 98.5%, while Ray et al. obtained a 

sensitivity of 98.96% for a specificity of 88.49%. 

Band-pass filtering is not the unique method used to 

capture the spindle activity before carrying out a level 

detection. Discrete wavelet transform was also used [12], as 

well as Matching pursuit (MT) [7]. 

Concerning algorithms based on features extraction 

followed by classification, it is broadly recognized that Short 

Time Fourier Transform (STFT) is an adequate tool to study 

the changes of the frequency content which characterized 

sleep spindles. In some cases, STFT coefficients are directly 

used as inputs of the classifier. By this way, Görür et al. 

obtained an agreement rate of 88.7% with a multilayer 

perceptron (MLP) classifier and a mean agreement rate of 

95.4% with support vector machine (SVM) [13]. In other 

cases, features are extracted from the STFT (e.g. mean 

amplitude in different frequency bands). Anderer et al. 2004 

reported up a specificity of 80% and a sensitivity of 86% by 
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Fig. 1.  Ten seconds of EEG recording (CZ-A1) with two spindles. 
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using subsequently a linear discriminant analysis [6]. 

Adaptive autoregressive (AR) modeling is another 

commonly used method for features extraction. Average 

performance was hereby reached between 88.8 and 93.6% 

with MLP and between 93.3 and 96.0% with SVM [13].  

Finally, let us remark that independent component analysis 

(ICA) was also investigated to separate spindle activity from 

multichannel EEG recording [14]. 

III. PERFORMANCE COMPARISON 

All these algorithms performance are not easily 

comparable because criteria used for sleep spindles 

identification are inconsistent across studies. Moreover, 

performance measurements are different, and classical terms 

usually employed to report the results do not always have the 

same significance. For example, algorithms for classification 

problem ([6], [13]) use EEG segment of fixed length 

containing or not the micro-event to be detected. The 

corresponding false positive rate is calculated as follow: 
#

# #

False Positive 
FPrate= 1 - specificity =

 ( False Positive  + True Negative)  
(1)

 

Algorithms for detection problem use a whole night 

recording. In this case, the false positive rate can either be 

calculated on a fixed resolution like above [4], or 

approximated by looking at the proportion of false positives 

relative to the number of real sleep spindle events [5]: 

#

# #

False Positive 
"FPrate" FPproportion=

 ( True positive + False Negative)


 
(2) 

Lastly, some others have also used the term “false positive 

rate” to indicate the amount of false alarms among all 

automatic detections [9]: 

#

# #

False Positive 
"FPrate" FPamount =

 ( True Positive + False Positive)
    (3) 

This multiple definition of the false positive rates must be 

taken carefully, especially when we compare algorithms 

performance. Indeed, a method presenting a false positive 

rate (FPproportion) of 30% according to (2) is definitely 

preferable to a method presenting a false positive rate of 

30% computed with (1) (since there is generally less than 4 

spindles per 30s during sleep stage 2). To avoid any 

confusion in the future, we propose in this paper an 

assessment method which allows computing these three 

parameters, and we will refer to them respectively as FPrate, 

FPpropotion and FPamount. 

IV. STANDARD PROPOSAL ASSESSMENT METHOD 

To allow evaluation and comparison between studies 

concerned with sleep spindles detection, we have published 

our database (as well as the associated visual scorings) on 

Internet. In addition, we propose below a general assessment 

method from which all parameters often reported in the 

literature can be extracted. 

http://www.tcts.fpms.ac.be/~devuyst/DataBaseSpindles/ 

A. Recordings 

Data were recorded at the Sleep Laboratory of the André 

Vésale hospital (Belgium).  They consist of six whole-nights 

recordings coming from patients (3 men and 3 women aged 

between 31 and 54) with different pathologies (dysomnia, 

PLMS, insomnia, apnea syndrome, etc.). Two EOG 

channels, three EEG channels and one submental EMG 

channel were recorded. The sampling frequency was 200Hz. 

A segment of 30 minutes was extracted from each night from 

the central EEG channel for spindles scoring. No effort was 

made to select good spindle epochs or noise free epochs, in 

order to reflect reality as well as possible. These excerpts 

were given independently to two experts for sleep spindles 

scoring. The total number of identified spindles was 289 for 

scorer 1 and 409 for scorer 2.  

B. Assessment algorithm 

The assessment algorithm uses, as inputs, the beginnings 

and durations of the micro-events scored by expert 1, by 

expert 2 and automatically detected. Then it identifies the 

quantity of each possible covering illustrated on Fig. 2. 

These various possible configurations are gathered in 4 

categories: type T1 corresponds to a correct automatic 

detection since at least one of the two experts has scored the 

event like such; type T2 corresponds to a false detection; 

type T3 corresponds to a missing detection with respect to 

one or both experts; and type T5 corresponds to multiple 

coverings implying automatic detection. 

Once the number of these various types is known, it is 

easy to deduce the number of true positives (#TP), the 

number of false positives (#FP) and the number of false 

negatives (#FN) of the different confusion matrices as 

illustrated in Table I. Furthermore, if we consider that the 

mean duration of sleep spindles is about 1 second, we can 

approach the number of true negatives (#TN) by: 

# # # #TN total duration of  the database in second FP TP FN     (4) 

 

 
Fig. 2.  Various possible coverings between the diverse micro-events 

scored by expert 1 (Vis1), scored by expert 2 (Vis2) and 

automatically detected (Aut). 
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Finally, we can deduce the various parameters generally 

employed in the literature from these confusion matrices: 

#

# #

TP 
sensitivity = TPrate

 ( TP + FN)
  (5) 

#

# #

TN
specificity =

 ( FP  + TN)
 (6) 

#

# #

FP 
FPrate= 1 - specificity =

 ( FP  + TN)
 (7) 

#

# #

FP 
FPproportion =

 ( TP + FN)
 (8) 

#

# #

FP
FPamount =

 ( TP + FP)
 (9) 

V. SPINDLE DETECTION ALGORITHM 

In order to illustrate and legitimate our assessment 

method, we have applied it to our own automatic sleep 

spindles detection procedure. This procedure is based on 

band-pass filtering and level detection, due to its simplicity. 

 In order to take the spindles amplitude variability into 

account, we used a recording-specific threshold. To do so, 

we operated a first distinction between spindles and non 

spindles on the basis of spectral features, as suggested by 

Huuponen et al. [9].  Then, we fixed the value of the 

recording-specific threshold by applying the Bayes’ theory 

as suggested in [4].  By multiplying this “Bayes” value by a 

factor K we obtained the final recording-specific threshold. 

The corresponding ROC curve obtained by varying K from 

0.1 to 2 by 0.1 intervals is illustrated in black on Fig. 3  

As we can see, a sufficient sensitivity is only obtained by 

fixing a lower value of K, which unfortunately also supplies 

an important number of false detections. This is partially 

caused by high frequency alpha intrusions and EMG 

artifacts. Indeed, during muscles contraction, the power of 

EMG artifacts also contaminates the sigma band, increasing 

the amplitude of the filtered signal. To make the distinction 

between sleep spindles and these false detections, it is 

necessary to take the spindles power as related to the total 

power into account (and not only power in the sigma band). 

To study this frequency content, the localized Fourier 

transform (STFT) is a particularly adapted tool.  

By gathering the squared magnitude of the STFT 

(computed with an Hanning window of 0.5s long, shifted 

every 0.1s) we obtain the spectrogram S of the signal from 

which we can compute, at each instant, the spindle power 

related to the total power as follow: 
15

11

40

0.5

( , )

( , )

S f t df

relative spindle power (t)=

S f t df




 

(10) 

  Detection whose relative spindle power was inferior to 

0.22 were removed, allowing thus to eliminate a big number 

of false detections as illustrated in Fig. 3 (solid grey line). 

Then, we also removed detections of inadequate duration 

(<0.5s). The corresponding ROC curve is illustrated in 

dashed grey line in Fig. 3. 

We computed lastly, for each possible sleep spindle, the 

corresponding autoregressive model of order 8 and we 

examined the frequency corresponding to the pole that has 

the maximum modulus, as suggested by Olbrich et al. [15]. 

We rejected all detections for which no pole had a 

corresponding frequency between 7 and 30Hz or those for 

which the frequency of the pole of maximum modulus was 

not in the interval 11-16Hz. The corresponding results were 

slightly improved as we can see in Fig. 3 (in dashed black). 

VI. RESULTS AND DISCUSSION 

To yield the results of our assessment method, we fixed 

the value of parameter K to 0.75, which corresponds to a 

sensitivity of 70%, while choosing the union of the visual 

scoring as reference. The corresponding quantities of 

possible coverings are reported in Table II and the 

corresponding confusion matrices are reported in Table III.  

It can be noticed that for a total of 289 sleep spindles (SS) 

scored by scorer 1 and 409 SS scored by scorer 2, there is a 

mutual agreement on only 159. This corresponds to 

sensitivities of only 55.02 % and 38.88% respectively. This 

is much less than the 81% of inter-human agreement rate for 

 
Fig. 3.  Illustration of the ROC curves obtained with different methods. 

 

TABLE I 

CONFUSION MATRICES 
 

CONFUSION MATRIX AUTOMATIC/VISUAL1 

 Yes Vis1 NoVis1 

Yes  

aut 
#TP = #T1A + #T1C+#T5A+#T5C #FP = #T2 + #T1B+#T5B 

No  

aut 
#FN = #T3A + #T3C + #T3D ~ #TN = 6*30*60 - #FP -#TP-#FN 

 

CONFUSION MATRIX AUTOMATIC/VISUAL2 

 Yes Vis2 NoVis2 

Yes  

aut 
#TP = #T1B + #T1C+#T5B+#T5C #FP = #T2 + #T1A+#T5A 

No  

aut 
#FN = #T3B + #T3C + #T3D ~ #TN = 6*30*60 - #FP -#TP-#FN 

 

CONFUSION MATRIX VISUAL1/VISUAL2 

 Yes Vis2 NoVis2 

Yes  

Vis1 
#TP = #T1C + #T3C + #T3D+#T5C #FP = #T1A + #T3A+#T5A+#T5A 

No  

Vis1 
#FN = #T1B + #T3B+#T5B ~ #TN = 6*30*60 - #FP -#TP-#FN 
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SS scoring reported Huupponen et al. [19]. Fortunately, the 

detection system agreed with 138 of these sleep spindles, 

which corresponds to an agreement rate of 86.79% (when a 

SS is considered as real when both scorers marked it as 

such). 

If we consider this intersection of the visual scoring as 

reference, we can observe (on table III) that the number of 

false positives is elevated, leading to a FPproportion of 

239.62%.  However, by considering the union of the visual 

scoring, we clearly decrease this number of false detections, 

obtaining a FPproportion of only 26.44 % for a sensitivity of 

70.20% (FPrate=1.38% and specificity= 98.62%). It seems 

therefore that extra automatic detections (relative to the 

intersection of the reference scorings) correspond to 

borderline cases that can be discussed, since most of them 

were classified as spindles by one of the 2 scorers. This also 

explains why the FPproportion obtained by considering only 

one visual scoring (111.81% for visual scoring 1 and 49.26% 

for visual scoring 2) exceeds the FPproportion obtained by 

considering the union of the reference scorings. 

VII. CONCLUSION 

We proposed in this paper a unique assessment method 

using a well defined terminology and from which it is 

possible to establish all the desired confusion matrices. In 

addition, we make our database and our visual scorings 

freely available on the web, to allow comparisons between 

other future works. Lastly, we applied, as example, our 

assessment method to our own automatic detection 

algorithm. The algorithm provides a sensitivity of 70.20% 

for a FPproportion of only 26.44 % (FPrate = 1.38% and 

specificity = 98.62%), that is quite suitable considering the 

inter-human agreement rate for sleep spindles scoring. In 

addition it shows an excellent repeatability. We do not 

exclude however the existence of more powerful detection 

processes and we encourage their authors to use our method 

of assessment to compare their results. 
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TABLE II 

RESULTS ON THE 6 EXCERPTS OF THE DATABASE. K=0.75 

 Sleep stages Total 

 Wake   REM    S1        S2       S3      S4     

Duration (s) 1260 0 1100 6080 1900 460 10800 

Nbr. total scored by system 32 0 4 383 99 10 528 

Nbr. total scored by scorer #1 31 0 5 236 13 4 289 

Nbr. total scored by scorer #2 5 0 2 315 77 10 409 

Nbr. scored by only system (T2) 18 0 3 84 35 2 142 

Nbr. scored by only scorer #1 (T 3A) 20 0 4 44 1 1 70 

Nbr. scored by only scorer #2 (T3B) 1 0 1 46 20 1 69 

Nbr. scored by only system & scorer #1(T1A) 10 0 0 41 6 0 57 

Nbr. scored by only system & scorer #2 (T1B) 3 0 0 119 52 6 180 

Nbr. scored by only scorer #1 & scorer #2 

(T3C) 0 0 0 19 1 1 21 

Nbr. scored by system & scorer #1 & #2 (T1C) 1 0 1 127 5 2 136 

Nbr. of type T3D 0 0 0 0 0 0 0 

Nbr. of type T5A 0 0 0 2 0 0 2 

Nbr. of type T5B 0 0 0 0 0 0 0 

Nbr. of type T5C 0 0 0 2 0 0 2 

Nbr.of automatic quotation implied in a 

multiple covering (3D, 5A,5B or 5C) 
0 0 0 7 0 0 7 

Nbr.of quotation of scorer 1 implied in a 

multiple covering (3D, 5A,5B or 5C) 
0 0 0 5 0 0 5 

Nbr.of quotation of scorer 2 implied in a 

multiple covering (3D, 5A,5B or 5C) 
0 0 0 3 0 0 3 

 

TABLE III 

CONFUSION MATRICES FOR K=0.75 

 Yes Vis1 No Vis1   Yes Vis 2 No Vis 2   Yes Vis 2 No Vis 2 

Yes  

Aut 
197 322  

Yes  

Aut 
318 201  

Yes  

Vis 1 
159 129 

No  

Aut 
91 ~10190  

No  

Aut 
90 ~10191  

No  

Vis 1 
249 ~10263 

 
Yes  

Vis1Vis2 

No 

Vis1Vis2 
  

Yes  

Vis1 Vis2 

No 

Vis1 Vis2 
 

Yes Aut 377 142  Yes Aut 138 381  

No Aut 160 ~10121  No Aut 21 ~10260  
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