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Abstract— Understanding the physiological impact of drug
treatments on patients is important in assessing their perfor-
mance and determining possible side effects. While this effect
might be best determined in individual subjects, conventional
methods assess treatment performance by averaging a physio-
logical measure of interest before and after drug administration
for n subjects. Summarizing large numbers of time-series
observations in two means for each subject in this way results
in significant information loss. Treatment effect can instead be
analyzed in individual subjects. Because serial dependence of
observations from the same animal must then be considered,
methods that assume independence of observations, such as
the t-test and z-test, cannot be used. We address this issue
in the case of respiratory data collected from anesthetized
rats that were injected with a dopamine agonist. In order to
accurately assess treatment effect in time-series data, we begin
by formulating a method of conditional likelihood maximization
to estimate the parameters of a first-order autoregressive (AR)
process. We show that treatment effect of a dopamine agonist
can be determined while incorporating serial effect into the
analysis. In addition, while maximum likelihood estimators of a
large sample with independent observations may converge to an
asymptotically normal distribution, this result of large sample
theory may not hold when observations are serially dependent.
In this case, a parametric bootstrap comparison can be used
to approximate an appropriate measure of uncertainty.

I. INTRODUCTION

In many respiratory experiments, treatment effect is quan-
tified after taking extensive measurements of variables such
as respiratory rate and tidal volume before and after the
administration of a drug. The difference between the average
value of the respiratory variable before and after treatment
for a sample of experimental subjects or animals is used
to estimate the average drug effect. Using this approach, a
sample with n animals will result in only n data points in
the analysis. Because these n data points are the averages of
detailed time-series measurements made before and after the
drug administration in each animal, this method results in
substantial information loss. This suggests that it should be
possible to preserve the information content of the original
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data by making an inference about the effects of the drug
in each animal separately, provided the serial dependence
in the recordings of the respiratory variable can be taken
into account. This paper presents one approach to addressing
serial dependence between observations in constructing a test
for treatment effect.

Previous work has developed methods such as three-
dimensional phase-space reconstruction to incorporate non-
linearity, which is often observed in heart rate variability
and respiratory movements, into time-series analysis [1].
However, while these methods can provide insight into
the data, they do not necessarily lend themselves well to
assessing the statistical significance of the difference in a
physiological measure between two particular time intervals.
To address this, this paper sets up the framework for a
first-order autoregressive process to demonstrate the use
of conditional maximum likelihood and bootstrap methods,
although the same method can be used for higher order
models that may characterize the data more accurately.

The standard method for assessing treatment effect in n
animals is to conduct a z-test or t-test for the difference
between means. These tests, however, assume independence
between observations. Because cardiac and breathing rate
observations in the same subject are serially correlated, this
assumption of independence is violated (Figs. 1 and 2).
Therefore, conventional means of hypothesis testing cannot
be used. In addition, construction of 95% confidence inter-
vals for the mean difference using the standard error of the
considered data will not accurately represent the uncertainty
in the estimate because of the assumption of independent
observations.

Modeling time-series data with an autoregressive (AR)
process, however, allows us to use conditional likelihood
methods to estimate the parameters and account for the serial
dependence between observations. Thus, a standard hypothe-
sis test can be modified to test for treatment effect in serially
correlated data by replacing the typically used sample mean
and standard error with the analogous maximum likelihood
estimates and standard deviations of these estimates, as ap-
proximated by the inverse of the observed Fisher information
matrix [3]. Similar methods have been used in constructing
state-space models based on Kalman filtering to analyze
optical imaging data, although the full likelihood function is
used instead of the conditional one [4]. The observed Fisher
information gives a reliable estimate for the variances of the
parameters under the assumption that when the sample size is
large, the conditional likelihood estimates behave according
to the distributions they asymptotically approach as the
sample size goes to infinity. These asymptotic distributions
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Fig. 1. Breathing rate (BPM) of rat 1. Injections of saline and dopamine
agonist marked by left and right dotted lines, respectively.

are Gaussian with variances given by the inverse Fisher in-
formation matrix [3]. This theory assumes that the data have
a large number of independent observations. In the case of
serially correlated data, however, there may be a substantial
amount of information loss because the observations depend
on each other. As a consequence, the approximate variances
of the maximum likelihood estimates from the observed
Fisher information matrix may not accurately describe the
actual variance in the parameters. To better approximate this
uncertainty, parametric bootstrap methods can be used to
generate a sample of values for the maximum likelihood
estimate of the parameter µ [5].

By addressing these two issues in the context of assessing
the difference in mean breathing rate before and after the
injection of a dopamine agonist in two rats, we propose a
correction for serial dependence on a standard hypothesis
test that allows us to maintain the information content of the
time-series data for each animal.

II. METHODS
A. Experimental Procedure

Two rats were maintained for 40 minutes under stable
general anesthesia using 1.4% isoflurane. Respiratory rate
(BPM) and tidal volume were continuously measured. After
40 minutes, a dopamine agonist was injected to assess its
effect on respiratory rate.

B. Experimental Data
To investigate whether or not injection of a dopamine

agonist resulted in a significant change in mean breathing
rate, the BPM data from before the administration of the drug
was compared to BPM data from after the administration of
the drug for two rats. The raw breathing rate data, as shown
in Figures 1 and 2, can be seen to start at a baseline level
and transition to a higher level, where it eventually flattens
out. Missing data values were removed from all data sets.
The conditional log-likelihood is

log (L(θ|x)) =− (T − 1) log(2πσ2
ε )/2

−
T∑
t=2

(xt − µ− φ(xt−1 − µ))2 /2σ2
ε . (1)

Fig. 2. Breathing rate (BPM) of rat 2. Injections of saline and dopamine
agonist marked by left and right dotted lines, respectively.

C. Conditional Likelihood Estimation

A stationary AR(1) model with mean µ, |φ| < 1, and
white noise εt follows

xt − µ = φ(xt−1 − µ) + εt. (2)

The white noise εt is assumed to be independently and
identically Gaussian distributed for all t, with mean 0 and
variance σ2

ε . We are interested in finding values for the
parameters θ = (µ, φ, σ2

ε ) that maximize the likelihood of
the data.

Rather than maximizing the full likelihood, which is less
computationally tractable, we greatly simplify the likelihood
calculations by conditioning on the first observation, x1. If
we let x = (x1, ..., xT ), then we have

L(θ|x) =
T∏
t=2

f(xt|xt−1, θ) (3)

Maximizing this with respect to µ, φ, and σ2
ε , we find that

the maximum likelihood estimates of the three parameters
are:

φ̂ =
T∑
t=2

(xt − µ̂)(xt−1 − µ̂) /
T∑
t=2

(xt−1 − µ̂)2 (4)

µ̂ =
T∑
t=2

(xt − φ̂xt−1)/
(
(T − 1)(1− φ̂)

)
(5)

σ̂2
ε =

T∑
t=2

(
xt − µ̂− φ̂(xt−1 − µ̂)

)2

/(T − 1) (6)

While the conditional maximum likelihood estimates of µ̂
and φ̂ are independent of σ̂2

ε , they are not independent of
each other. To find these estimates, we apply a cyclic descent
algorithm. These estimates convergence after a few iterations,
and the final values are used to calculate σ̂2

ε [6].

D. Variance of estimated parameters

The observed Fisher information matrix is computed from
the second derivatives of the conditional log-likelihood with
respect to µ, φ, and σ2

ε . The variance for each parameter is
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obtained from the inverse of this matrix and used to construct
95% confidence intervals for the parameters.
The observed Fisher information matrix is

I(θ̂) = −


∂2l
∂µ2

∂2l
∂µ∂φ

∂2l
∂µ∂σ2

ε
∂2l
∂φ∂µ

∂2l
∂φ2

∂2l
∂φ∂σ2

ε
∂2l

∂σ2
ε∂µ

∂2l
∂σ2

ε∂φ
∂2l

∂(σ2
ε )2


∣∣∣∣∣∣∣∣
θ̂=(µ̂,φ̂,σ̂ε)

. (7)

The variances of the parameter estimates are obtained from
the elements of the matrix [I(θ̂)]−1.

E. Hypothesis Test

Using these conditional maximum likelihood estimates, we
can conduct a hypothesis test of the difference in means
between two sets of data. From our AR(1) model, we know
that xt−µ−φ(xt−1−µ) = εt, where the εt are independently
and identically distributed according to a normal distribution
with mean 0 and variance σ2

ε for all t. For each of the two
data sets we are comparing, we find the maximum likelihood
estimate of µ. In addition, we can approximate the values of
σ2
µ1

and σ2
µ2

, the variances of these estimated means, using
the observed Fisher information matrix (7). Thus, we can
construct the test statistic

z = (µ̂1 − µ̂2)/
√
σ̂2
µ̂1

+ σ̂2
µ̂2
. (8)

To analyze the difference in mean breathing rate before
and after the injection of the dopamine agonist, as illustrated
in Figures 3 and 4, we conduct a test of the null hypothesis
H0 : µbefore = µafter against the alternative H1 : µbefore 6=
µafter for the two animals.

F. Bootstrap Analysis

From the observed Fisher information matrix, it is easy to
show that

σ2
µ̂ = σ2

ε /
(
(T − 1)(1− φ)2

)
. (9)

From this expression for the variance of the estimated
mean, it can be seen that it takes a form analogous to that
of the variance of the mean in a sample with independent
observations

σ2
µ = σ2/n, (10)

Fig. 3. Comparing mean breathing rate (BPM) before and after injection
of dopamine agonist (marked by dotted line) in rat 1

where n is the number of observations and σ2 is the variance
of the population. Thus, the denominator of the variance of
the mean for serially correlated data has what can be seen to
be approximately (T −1)(1−φ)2 independent observations.

For data for which this denominator is small (when there is
large serial correlation between observations), large sample
theory may not provide a suitable estimate of the parameter
variance. Therefore, this estimate of the variance of µ̂ may
not be an accurate measure of the uncertainty and will give
an incorrect z-statistic. To find a more accurate estimate of
the variance of the estimated mean (σ̂µ̂), we use a parametric
bootstrap comparison [5]. Using our original data and condi-
tional maximum likelihood estimates derived previously, we
simulate multiple bootstrap samples and find the conditional
maximum likelihood estimates of the parameters for each of
these samples.

The bootstrap algorithm is as follows:

A. For t = 2, ..., T
1. Draw ε∗t from N(0, σ̂2

ε ).
2. Compute x∗t = µ̂+ φ̂(x∗t−1 − µ̂) + ε∗t .

B. Given x∗ = (x1, x
∗
2, ..., x

∗
T ), compute θ̂∗ by maximizing

l(θ|x∗).
C. Repeat A and B 200 times.

Using this process, we obtained a set of 200 values of
µ̂. Taking the variance of the bootstrap sample gives a
bootstrap estimate of σ̂µ̂. The values were used to calculate
the modified z-statistic for the data from both animals (Table
2).

III. RESULTS

A. Convergence of maximum likelihood estimates

Convergence of conditional maximum likelihood estima-
tion of parameters for all but one of the considered data
sets occurred in fewer than 20 iterations. Convergence time
for each (µ̂, φ̂) pair was defined as the number of iterations
it took before both parameters reached a value less than
0.00001 from their values in the previous iteration.

Fig. 4. Comparing mean breathing rate (BPM) before and after injection
of dopamine agonist (marked by dotted line) in rat 2

1723



TABLE I
CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATES

B. Maximum likelihood estimates and standard deviations

Maximum likelihood estimates of the parameters and their
variances for the breathing rate data before and after the
dopamine agonist injection are shown in Table 1. These
estimates were calculated using a cyclic descent algorithm,
and the variances were calculated from the observed Fisher
information matrix.

C. Hypothesis tests

Hypothesis tests for two animals were conducted to ex-
amine the statistical significance of the difference in mean
breathing rate before and after the injection of the dopamine
agonist. Under the null hypothesis, the means before and
after the injection would be the same, and therefore, the
difference between the two would equal zero. For each
animal, three versions of this hypothesis test were performed.
The first, which we call the naive test, was done without
accounting for the serial correlation between observations.
The second, called the modified test, accounted for serial
correlation and used the conditional maximum likelihood
estimates and the Fisher information matrix to calculate the
z-statistic. The third test also used the conditional maxi-
mum likelihood estimates of the parameters, but parametric
bootstrap methods were used to estimate the variance of µ̂
instead of the Fisher information matrix. The results of the
hypothesis tests are given in Table 1.

Although all of the p-values were found to be significant
(< 10−16), there is a noticeable difference in the z-statistics
for the three methods considered. The lower magnitude of
the bootstrap z-statistic compared to the modified one agrees
with our stated logic; because there are a large number
of correlated observations, large sample theory need not
hold. Therefore, the inverse of the Fisher information matrix
may not give an accurate measure of the uncertainty in the
parameters.

IV. DISCUSSION & CONCLUSIONS

We have provided a two step correction for the problem of
conducting a simple hypothesis test of the difference in mean
respiratory rate before and after administration of a dopamine
agonist. To correct for the serial dependence in each set of
measurements, we first fit separate autoregressive models to
the BPM data before and after administration of the drug

TABLE II
COMPARING MEAN BREATHING RATE BEFORE AND AFTER INJECTION OF

DOPAMINE AGONIST (DA) WITH

H0 : µBEFORE = µAFTER, H1 : µBEFORE 6= µAFTER .

Animal 1 2
Naive z-statistic 43.667 61.359
Naive p-value < 10−16 < 10−16

Modified z-statistic 34.277 45.205
Modified p-value < 10−16 < 10−16

Bootstrap z-statistic 19.379 25.116
Bootstrap p-value < 10−16 < 10−16

treatment using a cyclic descent procedure to maximize the
conditional maximum likelihood of each data set. Second, we
used a parametric bootstrap to compute the uncertainty in the
parameters before and after the drug treatment to correct for
the possible inaccuracies in the parameter variance estimates
based on the observed Fisher information. The bootstrap
estimates of the parameter variances are used to conduct the
hypothesis test comparing the means. The two step procedure
provided a correction for the naive hypothesis test which
assumes that both sets of data are independent. Our approach
makes it possible to perform within subject hypothesis testing
instead of having a substantial loss of power because each
subject contributes a only a single pair of observations to a
group hypothesis test.

Our approach suggests several important extensions. These
include use of a higher order autoregressive model to char-
acterize the data better and use of a non-parametric bootstrap
procedure to further help compensate for lack of fit. In
addition, the non-constant mean respiratory rate can be
accounted for. These extensions will be considered when
applying these methods to further analyze the respiratory data
examined in this study.
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