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Abstract— The study of flow cycle morphology provides new
information about the breathing pattern. This study proposes
the characterization of cycle morphology in chronic heart
failure patients (CHF) patients, with periodic (PB) and non-
periodic breathing (nPB) patterns, and healthy subjects. Princi-
pal component analysis is applied to extract a respiratory cycle
model for each time segment defined by a 30-s moving window.
To characterize morphology of the model waveform, a number
of parameters are extracted whose significance is evaluated
in terms of the following three classification problems: CHF
patients with either PB or nPB, CHF patients versus healthy
subjects, and nPB patients versus healthy subjects. 26 CHF
patients (8 with PB and 18 with non-periodic breathing pattern
(nPB)) and 35 healthy subjects are studied. The results show
that a respiratory cycle compressed in time characterizes PB
patients, i.e., shorter inspiratory and expiratory periods, and
higher dispersion of the maximum inspiratory and expiratory
flow value (accuracy of 87%). The maximal expiratory flow
instant occurs earlier in CHF patients than in healthy subjects
(accuracy of 87%), with a steeper slope between inspiration and
expiration. It is also found that the standard deviation of the
expiratory period, evaluated for each subject, is much lower in
CHF patients than in healthy subjects. The maximal expiratory
flow instant occurs earlier (accuracy of 84%) in nPB patients,
when comparing subjects with similar respiratory pattern like
nPB patients and healthy subjects.

I. INTRODUCTION

Principal component analysis (PCA) is a very popular

linear data transformation technique for feature extraction

and data dimensionality reduction in statistical pattern recog-

nition and signal processing. The principal components are

derived as a linear combination of the variables of the data

set, with weights chosen so that the principal components be-

come mutually uncorrelated. Each component contains new

information about the data set, and is ordered so that the first

few components account for most of the variance [1], [2].

Principal component analysis is often employed for the

study of waveform morphology in different biomedical sig-

nals. It permits a rather robust feature extraction of various
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Politècnica de Catalunya (UPC), Institut de Bioenginyeria de Catalunya
(IBEC) and CIBER de Bioingenierı́a, Biomateriales y Nanomedicina
(CIBER-BBN). c/. Pau Gargallo, 5, 08028, Barcelona, Spain. (fax: +34
93 401 7045) (e-mail: ainara.garde@upc.edu, beatriz.giraldo@upc.edu, rai-
mon.jane@upc.edu).

L. Sörnmo is with the Department of Electrical and Information Tech-
nology and Center of Integrative Electrocardiology, Lund University, Lund
SE-221 00, Sweden (e-mail: leif.sornmo@eit.lth.se).

waveform properties when tracking temporal changes of a

signal. Castells et al. [3] present an overview of PCA in

different ECG signal processing applications.

Chronic heart failure (CHF) is associated with major

abnormalities of autonomic cardiovascular control, and is

characterized by enhanced sympathetic nerve activity and

cardiorespiratory disarrangement. CHF patients often de-

velop breathing anomalies such as various forms of oscil-

latory breathing patterns characterized by rises and falls

in ventilation. Several studies have shown that alternating

cycles of hyper- and hypoventilation provoke oscillations in

blood pressure, heart rate, and tidal volume, and that this

leads to a state of physiological instability in the already

stressed cardiovascular system [4]. Thus, abnormal breathing

patterns can promote the progression of heart failure and

cause increased mortality. Previous studies present periodic

breathing (PB) during sleep or wakefulness as a powerful

predictor of poor prognosis in CHF patients [5]. Various

studies report a PB prevalence as high as 70% in these

patients [6]. It is therefore crucial to establish accurate risk

stratification of CHF patients so as to optimize the allocation

of limited resources. The number of available treatment

options have increased, but this increase has rendered clinical

decision making far more complex.

In our previous studies we characterized the respiratory

pattern in CHF patients through the envelope of the respira-

tory flow signal [7], and by applying the correntropy to the

respiratory flow signal [8]. In this paper, we explore PCA for

studying the morphology of respiratory flow cycles in CHF

patients (both PB and nPB) and healthy subjects.

II. METHODS

A. Principal component analysis

When the signal is recurrent in nature, like the respiratory

flow signal, the analysis is often based on samples extracted

from the same segment location of different periods of

the signal. Once this segmentation is performed, the entire

ensemble is represented by an L×N data matrix X, where

each column xi contains L samples of each respiratory cycle

and N is the number of successive respiratory cycles:

X =
[

x1 x2 · · · xN

]

. (1)

Principal component analysis assumes that a signal x is

a zero-mean random process which is characterized by the

correlation matrix Rx = E[xxT]. The principal components
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w result from applying an orthonormal linear transformation

ψ =
[

ψ1 · · · ψL

]

to x [3],

w = ψTx (2)

such that the principal components become mutually uncor-

related.

The orthogonal basis functions are obtained as the most

significant eigenvectors of the correlation matrix Rx. In this

study, the sample correlation matrix is used, i.e.,

R̂x =
1

N
XXT

, (3)

and thus results from the detected respiratory flow cycles

contained in X. Once the eigenvectors and eigenvalues of

R̂x are calculated, the index RK is determined which reflects

how well the subset of K principal components approximates

the ensemble in energy terms,

RK =
∑K

k=1 λk

∑L
k=1 λk

(4)

where K is the number of components.

B. Respiratory flow cycle characterization

Through a moving window applied to the decimated

respiratory flow signal (Fs = 10 Hz), a respiratory cycle

model is calculated for each window. Since the PB patterns

are characterized by cycle lengths between 25 and 100 s

(i.e., 0.01-0.04 Hz), a moving window of 30 s, with an

overlap of 80%, is selected. The respiratory cycles within the

window are detected and aligned to the maximum inspiratory

flow placed in the 2nd second, using a fixed cycle duration.

The ensemble of respiratory flow cycles within the window,

is used to compute the sample autocorrelation matrix Rx.

In each window, a respiratory cycle model is obtained as

an ensample average of the respiratory cycles using the

truncated series expansion as a linear combination of the

K eigenvectors weighted by the corresponding principal

components. The value of K was determined by requiring

that at least 95% of the total energy should be accounted

for, and was found to range from 3 to 6.

In order to characterize the morphology of the respiratory

flow cycles, a number of parameters are extracted from

each cycle model: inspiratory time (Ti), expiratory time

(Te), inspiratory flow area (Ai), expiratory flow area (Ae),
maximum inspiratory flow value (Mi), maximum expiratory

flow value (Me), inspiratory flow kurtosis (Ki), expiratory

flow kurtosis (Ke), maximal inspiratory flow instant (Ii),
maximal expiratory flow instant (Ie), slope between the

inspiration and expiration (Sl p), and model error (Merr).
The model error is obtained by averaging the mean square

error (MSE) between the respiratory cycle model and each

of the cycles within the window. Figure 1 illustrates the

extraction of the respiratory cycle model and Fig. 2 the

related parameters.
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Fig. 1. (a) The respiratory flow signal of a CHF patient with periodic
breathing pattern, (b) the respiratory flow signal segment for the selected
window, (c) the ensemble of successive cycles within the window, and (d)
the respiratory cycle model.
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Fig. 2. Parameters extracted from the respiratory cycle model.

III. DATASETS

A. Respiratory Data

Respiratory flow signals were recorded from 35 healthy

volunteers (12 males, 23 females, aged 26.6±7 years) and

26 patients with CHF (19 males, 7 females, aged 65±9 years)

at the Santa Creu i Sant Pau Hospital in Barcelona, Spain.

All subjects were studied according to a protocol previously

approved by the local ethics committee. The respiratory flow

signal was acquired using a pneumotachograph, consisting

of a Datex–Ohmeda monitor with a Validyne Model MP45-

1-871 Variable-Reluctance Transducer. The signals were

recorded at 250 Hz sampling rate.

According to clinical criteria, CHF patients were classified

into two groups: 8 patients with periodic breathing pattern

and 18 patients with non-periodic breathing pattern.

IV. RESULTS

A. Illustration of the method

Figures 3, 4 and 5 illustrate the performance of PCA

when applied to a CHF patient with PB, a CHF patient

with nPB, and a healthy subject. From Fig. 3, it is clear

that the periodicity is also reflected in the temporal evolution

of certain parameters such as inspiratory (Ai) and expiratory

(Ae) flow area, expiratory time (Te), maximal inspiratory

flow instant (Ii), slope between inspiration and expiration
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Fig. 3. (a) The respiratory flow signal of a CHF patient with periodic
breathing pattern, (b) a new signal created with each cycle model obtained
for each window through PCA, (c) inspiratory and expiratory time, (d)
inspiratory and expiratory area for each cycle model, (e) inspiratory and
expiratory kurtosis, (f) maximal inspiratory and expiratory instant, (g) slope
of the respiratory model, and (h) model error for each cycle model.
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Fig. 4. (a) The respiratory flow signal of a CHF patient with non-periodic
breathing pattern, (b) a new signal created with each cycle model obtained
for each window through PCA, (c) inspiratory and expiratory time, (d)
inspiratory and expiratory area for each cycle model (e) inspiratory and
expiratory kurtosis (f) maximal inspiratory and expiratory instant, (g) slope
of the respiratory model, and (h) model error for each cycle model.

(Sl p), and model error (Merr). No clear periodicity is

obvious in Figs. 4 and 5 in (b, d, f and g).

B. Performance Evaluation

The characterization of respiratory flow cycles is evaluated

in terms of the following three classification problems: CHF

patients with either PB or nPB, CHF patients versus healthy

subjects, and nPB patients versus healthy subjects.

Table I presents the mean, standard deviation, and p-value

of the most relevant parameters for CHF patients with PB

and nPB. The standard deviation of the maximum inspiratory

(Mi) and expiratory (Me) flow value are higher in PB patients

due to the periodicity. Both Ti and Te are reduced in PB

patients.

Table II presents the mean, standard deviation, and p-

value of the most relevant parameters for CHF patients and

healthy subjects. From Table II it is clear that the maximal

expiratory flow instant (Ie) occurs earlier in CHF patients

than in healthy subjects. CHF patients exhibit a higher slope.

The standard deviation of the expiration time exhibits a lower

dispersion in CHF patients than in healthy subjects.
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Fig. 5. (a) The respiratory flow signal of a healthy subject, (b) a signal
created with each cycle model obtained for each window through PCA, (c)
inspiratory and expiratory time, (d) inspiratory and expiratory area for each
cycle model, (e) inspiratory and expiratory kurtosis, (f) maximal inspiratory
and expiratory instant (g) slope of the respiratory model, and (h) model
error for each cycle model.

Table III presents the mean, standard deviation, and p-

value of the most relevant parameters for nPB patients

and healthy subjects. Like in CHF patients, the maximal

expiratory flow instant (Ie) occurs earlier in nPB patients

than in healthy subjects, with a higher slope. The standard

deviation of the expiratory time is lower in nPB patients than

in healthy subjects.

TABLE I

CHF PB VS. NPB µ ±σ

PB nPB p-value

M−Merr 0.37±0.12 0.27±0.12 0.02
M−Ti 1.16±0.27 1.38±0.23 0.05
M−Te 1.79±0.34 2.21±0.31 0.02
M−Mi 0.44±0.05 0.36±0.11 0.05
M−Me 0.34±0.07 0.26±0.10 0.03
M−Sl p 0.66±0.20 0,45±0.20 0.03
SD−Merr 0.19±0.09 0.11±0.05 0.04
SD−Te 0.22±0.05 0.34±0.15 0.03
SD−Ai 0.86±0.40 0.49±0.19 0.04
SD−Ae 0.84±0.40 0.49±0.19 0.05
SD−Mi 0.13±0.05 0.07±0.03 0.005
SD−Me 0.10±0.04 0.05±0.02 0.003
SD−Sl p 0.27±0.11 0.17±0.09 0.04

TABLE II

CHF VS. HEALTHY µ ±σ

CHF-pat HEALTHY p-value

M−Merr 0.30±0.13 0.25±0.16 0.02
M−Ti 1.31±0.26 1.63±0.39 < 0.0005
M−Te 2.08±0.37 2.72±0.75 < 0.0005
M−Ki 1.72±0.10 1.81±0.15 0.009
M−Mi 0.39±0.10 0.32±0.13 0.02
M−Me 0.28±0.10 0.18±0.09 < 0.0005
M− Ie 0.63±0.15 0.97±0.35 < 0.0005
M−Sl p 0.51±0.22 0.24±0.15 < 0.0005
SD−Ti 0.19±0.07 0.31±0.14 < 0.0005
SD−Te 0.30±0.14 0.66±0.40 < 0.0005
SD−Ki 0.18±0.07 0.33±0.18 < 0.0005
SD−Ke 0.49±0.31 0.68±0.51 0.03
SD−Mi 0.09±0.04 0.06±0.02 0.01
SD−Me 0.07±0.03 0.04±0.02 0.003
SD− Ii 0.18±0.08 0.28±0.11 < 0.0005
SD− Ie 0.13±0.07 0.29±0.20 < 0.0005
SD−Sl p 0.20±0.10 0.11±0.05 < 0.0005
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Fig. 6. ROC curves obtained with (a) SD−Me, SD−Mi, M−Te, classifying PB versus nPB patients, (b) M− Ie, SD− Ie, M−Sl p, classifying CHF
patients versus healthy subjects, and (c) M− Ie, SD− Ie, M−Sl p, classifying nPB patients versus healthy subjects.

TABLE III

NPB VS. HEALTHY µ ±σ

nPB-pat HEALTHY p-value

M−Ti 1.38±0.23 1.63±0.40 0.005
M−Te 2.21±0.31 2.72±0.75 0.009
M−Ki 1.72±0.08 1.81±0.15 0.03
M−Me 0.26±0.10 0.18±0.09 0.01
M− Ie 0.66±0.16 0.97±0.35 < 0.0005
M−Sl p 0.45±0.20 0.24±0.15 < 0.0005
SD−Ti 0.20±0.07 0.31±0.14 0.001
SD−Te 0.34±0.15 0.66±0.40 0.001
SD−Ki 0.17±0.08 0.33±0.18 < 0.0005
SD− Ii 0.19±0.09 0.28±0.11 0.006
SD− Ie 0.14±0.08 0.29±0.20 < 0.0005
SD−Sl p 0.17±0.09 0.11±0.05 0.004

Figures 6(a) – (c), correspond to the classification of PB

versus nPB into CHF patients, CHF patients versus healthy

subjects, and nPB patients versus healthy subjects, respec-

tively, with the three most statistically significant parameters.

The best result classifying PB and nPB patients is obtained

with the standard deviation of the maximum expiratory flow

value, with an accuracy of 87%. When classifying CHF

patients and healthy subjects, the best result is obtained with

the mean of the maximal expiratory flow instant, with an

accuracy of 87%. Finally, the best result classifying nPB

patients and healthy subjects is achieved with the mean of the

maximal expiratory flow instant, with an accuracy of 84%.

V. CONCLUSIONS

When classifying PB patients and nPB patients, the stan-

dard deviation of the maximum inspiratory flow value and

foremost the standard deviation of the maximum expiratory

flow value are much higher in PB patients, which could

be related to the periodicity these patients (accuracy of

87%). Both inspiratory and expiratory times are reduced in

PB patients.

The maximal expiratory flow instant occurs before and

with lower dispersion in CHF patients than in healthy sub-

jects (accuracy of 87%). CHF patients present a higher slope

between inspiration and expiration with lower inspiratory and

expiratory times than in healthy subjects.

When comparing nPB patients versus healthy subjects, the

maximal expiratory flow occurs earlier and with a lower

dispersion in nPB patients than in healthy subjects (accuracy

of 84%). Likewise, nPB patients present reduced inspiratory

and expiratory time and higher slope than in healthy subjects.

In addition to the differences found previously in the

respiratory pattern CHF patients and healthy subjects [7],

[8] present significant differences in their respiratory flow

cycle. As a preliminary study, these results suggest that the

analysis of the respiratory cycle morphology is a promising

approach to evaluate differences between CHF patients and

healthy subjects.
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