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Abstract— Medical electronic systems are generating ever
larger data sets from a variety of sensors and devices. Such
systems are also being packaged in wearable designs for easy
and broad use. The large volume of data and the constraints of
low-power, extended-duration, and wireless monitoring impose
the need for on-chip processing to distill clinically relevant
information from the raw data. The higher-level information,
rather than the raw data, is what needs to be transmitted. We
present one example of information processing for continuous,
high-sampling-rate data collected from wearable and portable
devices. A wearable cardiac and motion monitor designed by
colleagues at MIT simultaneously records electrocardiogram
(ECG) and 3-axis acceleration to onboard memory, in an
ambulatory setting. The acceleration data is used to generate a
continuous estimate of physical activity. Additionally, we use a
Portapres continuous blood pressure monitor to concurrently
record the arterial blood pressure (ABP) waveform. To help
reduce noise, which is an increased challenge in ambulatory
monitoring, we use both the ECG and ABP waveforms to
generate a robust measure of heart rate from noisy data. We
also generate an overall signal abnormality index to aid in
the interpretation of the results. Two important cardiovascular
quantities, namely cardiac output (CO) and total peripheral
resistance (TPR), are then derived from this data over a
sequence of physical activities. CO and TPR can be estimated
(to within a scale factor) from heart rate, pulse pressure
and mean arterial blood pressure, which in turn are directly
obtained from the ECG and ABP signals. Data was collected on
10 healthy subjects. The derived quantities vary in a manner
that is consistent with known physiology. Further work remains
to correlate these values with the cardiac health state.

I. INTRODUCTION

Wearable medical devices based on low-cost technology
have caught the attention of researchers and companies in
the engineering and medical realms. A wide variety of
devices is already available, though the field is still growing
rapidly, and many challenges remain [1]–[3]. Among other
applications, wearable sensors have been developed for heart
rate, blood pressure, body position, and glucose monitoring
[4], [5]. Engineering challenges that arise universally in the
area of wearable medical technology relate to the size and
comfort of the device, as well as to power management. Data
communication is a central aspect in the design of a wearable
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device, and wireless data transmission consumes substantial
power.

A significant challenge also relates to turning the collected
raw data into appropriately aggregated clinical information.
Since clinicians already face the problem of data overload,
wearable devices are unlikely to aid in the clinical decision-
making process unless their raw data are converted into clin-
ically interpretable and potentially actionable information. It
might therefore be desirable not to stream the collected raw
data continuously, but rather to perform much of the data
processing on the device itself, and to communicate only
clinically important changes in the state of the subject, mea-
sured at some aggregate level. The corresponding algorithms
will need to be developed to run in real-time on processors
that might have limited memory or energy resources. An
illustration of this in the setting of electrocardiogram (ECG)
waveforms is described in [6].

Since wearable devices are primarily designed for use
outside of the relatively well controlled clinical environment,
we expect noise and artifacts to be significantly increased in
such ambulatory settings. On-chip algorithms are therefore
required to extract stretches of data with sufficient signal
quality before processing the raw data.

In this paper, we present a method for robust heart rate
estimation on the basis of signal-quality assessment, and
outline a model-based approach to integrating and interpret-
ing physiological data from different wearable devices. A
preliminary version of the results here was presented in [7].

A. Outline

The pumping heart circulates blood through all parts of the
body to support metabolism. The average rate of blood flow
from the heart is the cardiac output (CO). Various neural,
hormonal and metabolic feedback control mechanisms act
to maintain arterial blood pressure (ABP) sufficiently high
to allow proper perfusion of body tissues, and to keep CO
matched to metabolic needs.

Arteriolar resistance is regulated by local metabolic needs,
allowing the most metabolically active tissues to receive the
greatest blood flow. The total peripheral resistance (TPR) is
the net resistance to flow seen by the heart, and is the ratio of
mean ABP to CO (in close analogy to electrical resistance,
which is the ratio of potential difference to current).

Conventional clinical methods for measuring absolute CO,
such as thermodilution or ultrasound, are either invasive or
restrictive in methodology, and require expert operators with
specialized equipment. Since reliable absolute measurements
cannot generally be obtained outside a clinical setting, little
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has been done to demonstrate how CO and TPR are affected
by normal physical activity.

Using ambulatory sensors, we estimate uncalibrated (i.e.,
relative, not absolute) versions of both quantities over a
series of activities, in addition to obtaining an estimate of
the concurrent physical activity of the subject. From these
three estimates one can hope to eventually make inferences
regarding the relative cardiac health of the subject.

The next section (under Methods) describes our data
collection setup and the computations used to estimate CO,
TPR and physical activity (PA). We then (under Results)
describe representative measured data, as well as the trends
in CO, TPR, and PA estimated from this data. Specific
discussion of these waveforms and their relationships is
contained in the same section, while a broader examination
of some issues related to ambulatory monitoring is presented
in the last section of the paper (as Discussion).

II. METHODS

A. Devices

The electrical activity associated with the depolarization
and repolarization of cardiac muscle on every heart beat is
reflected – in a very distinctive and interpretable way – in
features of the ECG signal. These features repeat every heart
beat, so heart rate is quite easily determined from the ECG
signal. More subtle features of the ECG signal can also be
used to diagnose a variety of cardiac conditions.

ECG monitoring in the hospital is routine, but finds only
occasional use outside the clinic, in the form of Holter mon-
itors. We used an experimental ECG monitor, constructed as
a low-noise, low-power device that attaches directly to a set
of adhesive ECG electrodes placed on the chest. It can record
data for up to two weeks, and perform on-board processing of
the data using a Texas Instruments TI MSP 430 processor.
There is also an accelerometer on board (Analog Devices
ADXL345) for 3-axis accelerometry.

We used a Portapres blood pressure monitoring system
to record the ABP waveform continuously. This device is
currently the state-of-the-art technology for measuring ABP
noninvasively, using a finger cuff. Additionally, we collected
clinical ECG data for validation of the experimental device,
as well as plethysmography and respiration data.

B. Data Collection

The data collection protocol of our experiments was
approved by MIT’s Committee on the Use of Humans as
Experimental Subjects. We collected data on 10 subjects.
Each subject wore the sensors described in the preceding sub-
section, and was asked to perform specific tasks mimicking
routine ambulatory activities. These included 5 minutes lying
down in the supine position, 5 minutes sitting, 5 minutes
standing, 1 minute jumping, 1 minute of arm movement,
a Valsalva (straining) maneuver, walking and running for 5
minutes each on a treadmill, and stepping for 1 minute. The
whole routine was performed twice in succession, with a
rest in between, for a total of approximately 1.5 hours per
subject.

C. Noise

One significant challenge in working with data collected
in ambulatory settings is the level of noise present. We
present two approaches to mitigate the effects of noise on
the measured data streams.

The first approach leverages the inherent redundancy of
simultaneously collected physiological data. More than one
of the signals collected contains information about the heart
rate of the subject, for example. The ECG is traditionally
used to extract heart rate because of the sharp features of the
QRS complex, which are easily recognized in each beat and
are not unduly susceptible to noise and artifact. The blood
pressure waveform, on the other hand, contains the same
information, but has lower-frequency fiduciary markers that
are susceptible to noise and artifact. Both signals, however,
can be used to extract candidate heart rate signals, and the
resultant heart rate signals can be compared to each other.
Large and sudden deviations in heart rate are usually an
indication of poor quality of the underlying data or poor
performance of the beat-detection algorithms.

A challenge in processing ECG and blood pressure is
that the beat onsets do not occur at the same time (due
to the excitation-contraction coupling of the heart and the
finite pulse-propagation velocity of the pressure waveform
to the measurement location). To identify artifacts in the
heart rate signals derived from these two measurements, we
developed an algorithm based on the curve-length transform
(CLT) to identify large and sudden deviations. For a signal
y(t) sampled at intervals ∆t, the CLT is defined by

CLT(w, i) =

i+w∑
k=i

√
∆t2 + ∆y2k , (1)

where ∆yk is the increment in y(t) between samples k − 1
and k, and w denotes the window length, which is a key
parameter [8]. The arc length of the curve is calculated over
the same three consecutive beats for the two signals. If the
resulting values of the CLT differ by a significant fraction
(arbitrarily set to 20%), the signal with the lower CLT is used
to calculate heart rate for the current beat. If neither signal
exhibits high noise, then the average of the corresponding
two estimates is taken as the best estimate.

The CLT can be used in a similar fashion to provide a
measure of noise in a single signal. A sharp increase in curve
length over a particular (well-chosen) window may indicate
noise and artifact in that window, rather than physiological
change.

D. Modeling and Estimation

Various models and algorithms have been developed in
the literature for estimating CO and TPR from more readily
accessible quantities such as heart rate and blood pressure.
One simple technique is based on the Windkessel model [9].
In this model, the pulse pressure (PP), which is the difference
between systolic (peak) and diastolic (valley) pressures on
the ABP waveform, is proportional to the stroke volume (i.e.,
blood volume ejected by the heart at each beat). Since CO is
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Fig. 1. Accelerations on the 3 axes are shown in green, cyan and brown,
while the physical activity estimate is shown in black. The activities the
subject is performing are labeled on the bottom for given stretches of time,
with gaps representing rest and setup times.

equal to the stroke volume times the heart rate, CO is then
proportional to the product of pulse pressure and heart rate:

CO ≈ HR ∗ PP . (2)

We take this latter product, pulse pressure times heart rate,
as our uncalibrated CO estimate. A quantity proportional to
TPR can then be estimated by dividing mean ABP by our
CO estimate, and this is our uncalibrated TPR estimate:

TPR = meanABP/CO . (3)

With the ABP waveform data from the Portapres, we have
both the pulse pressure and mean pressure of each beat, as
required to compute the above estimates.

To estimate the demands on the cardiovascular system, we
track the physical activity (PA) of the subject, using the data
from the accelerometer. We estimate PA as the square root
of the sum of the variances of all three axes of acceleration,
on a sliding four-second window:

PA =
√
σ2
x + σ2

y + σ2
z . (4)

One limitation of this estimate is that the accelerometer is on
the chest, and therefore actually only measures the activity
of the torso.

III. RESULTS
Figure 1 shows the accelerometer data along with the

associated PA estimate for a portion of the test on one
representative subject, as the subject moves through the
indicated activities. The remaining figures here correspond
to a second subject. The heart rates derived from the ECG
and ABP waveforms for this second subject are plotted
in Fig. 2, and the filtered, estimated heart rate is plotted
in Fig. 3. The resultant estimated heart rate signal does
not show many of the unphysiological variations present in
Fig. 2. Note from Fig. 3 that two significant drops in HR
to 40 beats/min persist. These occurred when the subject
performed a Valsalva maneuver, and in fact are a valuable
indication of the healthy state of the subject’s autonomic
control system. The algorithm retained these physiological
events, whereas a threshold-based algorithm might have
rejected them.
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Fig. 2. Noisy heart rate measurements, with ECG-derived heart rate in
blue and ABP-derived heart rate in red.
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Fig. 3. Cleaned-up heart rate estimate showing very few large deviations.
The drops in heart rate around 1600 s and 4200 s are associated with
Valsalva maneuvers.

Fig. 4. The cardiac output (blue), total peripheral resistance (green), and
physical activity (red) estimates over the course of one experimental session.

Fig. 5. The abnormality score follows the activity estimate well, as
anticipated. It can be seen that the second time running on the treadmill
was noisier, and a clinician would be directed to the first time running for
analysis.

The estimated values for CO, TPR and PA for this subject
are plotted in Fig. 4, which shows approximately 90 minutes
of data, including two sets of activities described previously.
When the subject begins jumping, noted by the sharp rise
in PA around 1300 seconds, the CO rises and the TPR falls
quickly. After the subject stops, noted by the sharp fall in
PA, the CO quickly falls and the TPR rises more gradually.

At around 1800 seconds the subject starts walking on
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the treadmill. There is initially a moderate increase in CO,
which settles at a level above the previous baseline. The TPR
falls, largely reflecting dilation of arterioles in the muscles
under local metabolic control, to increase blood flow there.
When the subject begins to run on the treadmill around 2100
seconds, the CO rises much more significantly, reflecting the
increased metabolic demand. The CO is fairly noisy during
this stretch, probably due to the motion of the sensors during
running. Immediately after the subject stops running, the
CO drops rapidly while the TPR appears to recover more
gradually. The interpretation of these post-running transients
is more subtle, as it involves the interaction of several
mechanisms [10], [11].

At 2700 seconds the subject begins simulated stair climb-
ing by stepping on and off the back of the treadmill. Though
the exercise appears to require a similar level of PA as
walking, there is a larger increase in CO and an even more
gradual decrease in TPR than noted in walking. Afterwards
CO falls quickly and TPR rises close to the initial baseline.

The patterns repeat themselves when the subject undergoes
the same activities a second time. It may be that during
the second set of activities the cardiovascular system reacts
faster. This can be seen around 4300 seconds when the
subject starts walking on the treadmill and the CO rises faster
and higher than it had during the commencement of walking
in the first set of activities.

Figure 5 shows a signal abnormality score derived from
the CO estimate by simply computing the CLT over a 20-
beat window. The noisier portions of the signal, as flagged by
higher values of the abnormality score, correspond to periods
of higher physical activity.

IV. DISCUSSION

Extracting meaningful clinical information from wearable
sensors is a task likely to grow in importance as wearable
health monitors make their way out of the research domain
and into clinical practice. In this context, two important and
related topics need to be addressed: (1) detecting regions of
good signal quality for subsequent analysis, and (2) turning
raw data into clinically meaningful information. In this paper,
we report initial progress on both challenges, in a particular
setting. We have developed an adjudication process by which
an algorithm determines a robust estimate of heart rate by
analyzing differences in heart rate signals derived from two
different data streams. The algorithm incorporates a notion
of signal quality (or abnormality) to decide which heart
rate values to report. Such signal-quality assessment will be
very important in handling data from wearable monitors, as
motion artifact and other sources of noise are likely to corrupt
the signals significantly. We addressed the second challenge
by using a model-based algorithm to estimate (uncalibrated)
CO and TPR from the acquired ECG and ABP waveforms.
Our estimates of CO and TPR show the variations with PA
one would expect on the basis of the underlying physiology.

We previously had described results from one subject [7],
but in this paper report quite consistent results across all ten
subjects tested. The use of the CLT to flag noisy segments

of data, and its use in constructing a more robust estimate
of heart rate, were not discussed in [7].

V. CONCLUSIONS

Wearable sensors have not yet made their way into ev-
eryday medicine, but have vast potential. We have presented
results showing the possibility of estimating important quan-
tities such as CO, TPR, and PA from data collected with
wearable and portable sensors. Though not free of noise,
the data shows clear patterns that can be explained by
the underlying cardiovascular physiology. By using known
physiology, we leverage the data we collect from wearable
sensors and produce estimates that can be clinically relevant.
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