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Abstract— In this paper we introduce a robust classifica-
tion framework for tongue-movement ear pressure signals
based around an ensemble voting methodology. The ensemble
members are comprised of different combinations of sensor
inputs i.e. two in-ear microphones and an acoustic gel sensor
positioned under the chin of the individual and classification
using three different base models. It is shown that by using
all nine ensemble members when compared to the individual
(base) models, the average misclassification rate can be reduced
from 23% to 2.8% when using the majority voting strategy.
The correct classification rate is improved from 76% to 92.4%
when utilizing either the borda count or condorcet methods.
This is achieved through a combination of rejection based on
ambiguity in the ensemble and diversity in the misclassified
instances across the ensemble members.

I. INTRODUCTION

Afflictions of the sensory-motor system both physical and

neurological can profoundly inhibit human movement. The

extremities tend to be at higher risk due to their inherent

distance from the brain and body, thus increasing the po-

tential for severing of the peripheral nervous system and/or

limbs. Upper extremity motor loss can be induced by spinal

cord injury (SCI), paraplegia, congenital limb deformities

and stroke to name a few. Over the last few decades, a

multitude of research has been conducted towards providing

novel solutions that replace or compensate these degraded

pathways. One particular area of interest is providing an

individual with new ways for communicating with assistive

technologies. This involves thinking of new and creative

methods by which a user can express their intention and

thereby control peripheral devices. The use of the head,

tongue, eyes and brain in providing these new communi-

cation pathways, have been employed by researchers, due to

the robust functionality of these craniofacial regions under

said conditions.

Recently a non-invasive tongue based communication sys-

tem has been developed, based around tongue-movement ear

pressure (TMEP) signals [1]. The sensory unit is centered on

a microphone positioned within the user’s external acoustic
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meatus with user intention expressed through prescribed

flicks of the tongue. These impulsive motions create unique

low frequency (0 - 100 Hz) bio-acoustic pressure signals

within the auditory cavity, allowing for inter-action dis-

crimination and also discrimination from naturally occurring

acoustic signals. Currently four actions have been defined

and involve placement of the tip of the tongue at the base

of the central incisor, left or right first molar and flicking

the tongue up (bottom/left/right action) and placing the tip

of the tongue against the top of the palate and flicking down

(top action). This action set was chosen due to the tongue

motions not normally occurring in daily activity, yet the

actions themselves feel natural whilst executing, ensuring re-

peatability. Previous work has shown inter-class classification

results of various algorithms using four a-priori collected

data-sets [1], discrimination between controlled and non-

controlled movements based on the signal frequency content

extracted using a wavelet packet transform [2] and initial

real-time classification across three of the actions [3]. All

this work has concentrated on mono-channel classification

using individual classifiers.

As an extension, an augmented bio-acoustic system based

on a multi-channel ensemble classification framework is

proposed. As opposed to obtaining data from a single micro-

phone, a three channel system is implemented, consisting of a

microphone placed within each ear and an acoustic gel sensor

secured to the underside of the chin [4]. The acoustic gel

sensor, although capturing a similar type of signal, provides

additional information as the acoustic wave is propagating

through a different facial region, thus providing different

signal characteristics and therefore additional information.

Fig. 1 gives an overview of the system (top-left), example

waveforms associated with each channel from a single action

(top-right) and a block representation of the ensemble pro-

cess utilized (bottom). A multi-class system naturally allows

for classifier rejection when there are conflicting channel

outputs, preventing misclassification when there is ensemble

disparities. This is vital when there is increased intra-class

variance due to testing in non-controlled environments. In

this paper the ensemble multi-channel framework is outlined,

with its effectiveness for inter-class classification of TMEP

signals highlighted through comparison to individual classi-

fication baselines.

II. METHODOLOGY

Combining of multiple channels for classification naturally

lends itself to be formulated within an ensemble classification

framework. An ensemble classifier methodology can be
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Fig. 1. Overview of the 3 channel system, examples of the signals for one action instance and the associated ensemble classification methodology

described as the weighted combination of several individual

pattern classifiers to produce an output that outperforms

every one of them. It mimics standard human nature of

actively seeking several opinions before making a crucial

decision [5]. A vast majority of ensemble methods rely on

a single base model, with the ensemble created by training

on different bootstraps of the data e.g. bagging techniques

[6]. However if only a small training set is available this can

tend not to provide the diversity required to produce a good

ensemble. Random feature subspace methods are another

technique for obtaining an ensemble of classifiers, however,

when directly used with contiguous time series data it seems

un-intuitive and requires tuning of additional parameters. In

this paper we propose to combine the outputs of different

sources (channels), classified through various base models

outlined below. The basis for using different models and the

selection of the models themselves is that each one extracts

different information from each source channel based on

frequency domain, time domain, and correlation (template

matching) features.

A. Base classifiers

1) Gaussian Bayes classifier (GBC-DCT): Bayes’ deci-

sion theory provides a fundamental methodology for solv-

ing statistical classification problems. Under the assumption

of a naive Gaussian distribution of the features, problems

associated with dimensionality can be circumvented and a

quadratic classifier is retained. The test instance is assigned

to the class which maximizes the log posterior where all

the sample statistics are estimated from the training set.

For feature extraction, a frequency transform called the

discrete cosine transform (DCT) is employed. The DCT is

related to a real-valued DFT but allows more of the signals

energy to be concentrated on fewer coefficients. This feature

extraction can be represented as a linear matrix operation,

s = Φx, where Φ represents the DCT basis matrix. Prior to

classification the DCT coefficient vector s is reduced using

a magnitude ranking and cross-validation procedure so as to

reduce computation and over-fitting to the training set [3].

2) Decision fusion classifier (DFC): The decision fusion

classifier (DFC) is based on multinomial probabilities at each

feature point that are then fused to give a single decision [1].

The individual distributions are estimated from the training

set and are based on the likelihood of an instance being

most similar to one of C-class templates. The similarity

metric used is the Euclidean norm nearest mean discriminant

function. The multinomial distribution of an instance at

sample n, being classified to one of the C-classes, given

its true class, can then be estimated from the training set

based on the maximization of this discriminant function.

The N -sample classifiers are then ranked based on the

average correct classification across the C-classes. A test

signal is then classified by reordering the vector according to

this a-priori ranking and obtaining N -classifications at each

sample using the discriminant function. The corresponding

likelihood probabilities of each of these individual classifi-

cation outputs for correct and misclassification to one of the

‘C − 1’ remaining actions, as found in the training phase,

are concatenated at each sample to form ‘C’ probability

vectors. The final classification is then given by the class

which maximizes the sum of these vectors.

3) Matched filter classifier (MFC): The matched filter

classifier (MFC) is used to extract a known signal in station-

ary noise. It is designed to maximize the signal-to-noise ratio

at n = N and is equivalent to maximization of the cross-

correlation between the test instance and the C-templates.

The output is assigned to the class which gives the maximum

value after convolution between the test instance and the C-

templates.
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B. Voting strategies

Use of rank-based (preferential) strategies allows for fu-

sion and synergistic classification between base classifiers

which may or may not exhibit varying types of output. A

brief overview of some non-trainable voting schemes are

outlined below and in [7].

1) Plurality voting: Plurality is a voting system in which

the class with the most votes across the classifier and

channel combinations is reconciled as the overall ensemble

classification output. Rejection of the classification can only

occur if there is a tie for the top place.

2) Majority voting: A majority vote is considered to give

a slightly more democratic output, in the sense that a winner

is only selected if a majority verdict is reached. If there is

less than 50% of votes cast in favor of the winning class,

then the classification is rejected.

3) Alternative voting: If a winner isn’t assigned after a

majority vote, the class with the minority is removed from

the classification set and a majority vote takes place again.

This is repeated until either a majority winner is eventually

found or if the two remaining classes have the same number

of votes then the classification is rejected.

4) Borda count voting: The individual outputs from each

base classifier is ranked from 1 − C with these converted

directly to an associated score ranging from C−1, C−2, ...0.

The scores are then tallied over the entire ensemble and the

class with the biggest tally is selected as the winner, if a draw

for top place is obtained then the classification is rejected.

5) Condorcet voting: This method involves pairwise

head-to-head comparisons between each class, with a point

tallied for each winner. This means that C!/(2(C − 2)!)
comparisons are made for each voter with the class who wins

the most head-to-head pairings declared overall ensemble

winner. Due to the transitive nature of this method, rejection

of the classification can occur, in the case of 2 or more

classes being equal top scorers.

C. Experimental protocol

Data was collected from four healthy individuals aged be-

tween 21 and 28 and included collection of at least one hun-

dred signals of each of the four actions outlined previously.

Only subject 1 was familiar with making the actions, with

the other subjects instructed over the course of 2-4 sessions

(lasting approximately 30 minutes per session). The setup of

the system was as follows; seating the subject comfortably

in front of the laptop running the data collection software,

placement of a generic earpiece in each ear of the individual

(channels 1 and 2) and placement of an acoustic gel sensor

under the chin of the subject, secured using a velcro strap

around the head (channel 3). The sensors were connected to

the laptop through pre-amplifiers, anti-alias filters set to 4

kHz and commercially available USB soundcards. Detection

parameters were set by the experimental assistant and the

software was allowed to autonomously detect and save the

signals. The subjects were directed to follow a stimulus

on screen with the program paused whenever a subject

required a break. Any anomalous signals that the software

segmented and saved but did not originate from a tongue

motion were indicated by the subject and removed at the

time of occurrence. The data was recorded at a sample rate

of 8 kHz with the experimental protocol approved by the

local ethics committee.

III. RESULTS

Results were run for the four subjects, using a 10-fold

cross-validation procedure to estimate the generalization

error, correct classification and rejected classification rates.

The signals were downsampled to 2 kHz and segmented to

0.256 seconds (512 samples) and further decomposed using

a wavelet packet transform, so that the 0 - 500 Hz sub-bands

could be selected (thus reducing the number of samples and

therefore computation time) [2]. Each fold was used as the

test set (10 instances x 4 actions) in turn, with a reduced

training set (32 instances x 4 actions) randomly selected

from the remaining ninety instances. Thus within each cross-

validated run the entire data set was used for testing. This was

repeated a hundred times with the data set randomly shuffled

each run. For each run the three base classifiers were trained

on the three channels of data, indicating a maximum of nine

voters in the ensemble. The five voting strategies were tested

against different ensemble sizes and combinations. The total

number of combinations for each ensemble size, 1−9 being

{9, 36, 84, 126, 126, 84, 36, 9, 1} respectively.

Fig. 2 shows the error, correct and rejected classification

accuracies for the five voting strategies versus different

ensemble sizes. The results are averaged over the various

combinations and subjects. The first result at ensemble size

1 gives the individual classification results averaged across

all the base classifier and channel combinations and thus acts

as the baseline for the five voting strategies with 0% rejection

and 23.2% generalization error. There is a general trend of

increased performance (reduced error and increased correct

classification) as the ensemble size is increased, with this

tailing off around the 6/7 ensemble size point. Alternative

voting consistently performs the worst and produces no

rejection at the odd prime ensemble sizes of 5 & 7. The

majority vote generally performs the best, achieving the

lowest generalization error of 2.8% when the full ensemble

set is used. This is at the expense of a lower correct

classification rate (86.2%) due to a higher rejection rate

(11%). A similar error rate is achieved with an ensemble size

of 2 for both the plurality and majority strategies but this is at

the expense of a significantly increased rejection rate which

reduces the correct classification to below the baseline. It

should be noted that the borda count and condorcet methods

are equal in all cases, giving their best correct classification

rate of 92.4% (error 5.8%, rejection 1.8%) for an ensemble

of size 9. They generally give lower rejection rates than

the plurality and majority methods across all ensemble sizes

leading to slightly increased correct classification rates but

in conjunction with increased misclassification rates.

Further to this Fig. 3 shows error and rejection rates for

different combinations of channels and base classifiers using

the majority voting strategy. The majority voting strategy is
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Fig. 2. Ensemble classification results for various combinations of the 3
channel, 3 classifier system

only considered as this gave the best results in terms of mis-

classification error. Fig. 3(a) gives results pertaining to each

channel being excluded from the ensemble combinations,

whilst Fig. 3(b) shows the removal of each base classifier

in turn. This reduces the maximum ensemble size to 6, with

the total number of combinations for ensemble sizes 1 − 6
being {6, 15, 20, 20, 15, 1} respectively. The lowest error

from the classifier exclusions is when the MFC is removed

(error 4.5%, rejection 9.3%, correct 86.2%, ensemble size 5)

with the results generally quite uniform across the classifier

removals, indicating relatively equal contributions from each

classifier. The MFC has been shown to perform worst on

individual channel classification, with these results indicative

of this [1]. The lowest error from the channel exclusions

is when channel 2 is removed (error 3.7%, rejection 4.7%,

correct 91.6%, ensemble size 6) and even though a lower

error is achieved whilst utilizing all channels and classifiers

it is at the expense of a higher rejection rate. However, it

cannot be elucidated from this result that channel 2 should

be disregarded from the system entirely, as between subjects,

channel 1 and 2 cannot be differentiated. This is because

the placement and performance of each channel within each

ear is completely subject specific. These results do however

indicate the usefulness of the acoustic gel sensor but also

show that if a two channel system was considered i.e.

channels 1 and 2 only, as this is the simplest setup in terms of

donning, obtrusion and cost, there is still a relative increase

in performance (error 8.0%, rejection 12.0%, correct 80.0%,

ensemble size 5).

IV. CONCLUSIONS

It has been shown that the use of additional chan-

nels/sensors combined with ensemble voting techniques

can significantly increase the classification performance of

tongue-movement ear pressure signals. This is in part due

to the framework allowing for the rejection of classification

when there is significant disagreement of the class of a

particular test signal and thus rather then potentially mis-

classifying it, the system classifies the action as unknown.

This increase in correct classification can also be affiliated

with the diversity in classification across the ensemble set,
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Fig. 3. Ensemble classification results for various combinations with
exclusion of one channel or classifier only. (a) shows results pertaining
to removal of each channel in turn while (b) gives results for removal of
each base classifier in turn.

implying that certain ensemble members which would give

incorrect outputs are alleviated by the rest of the ensemble.

Hence the philosophy of seeking several opinions before a

crucial decision is made is an extremely useful methodology

to implement. The robustness of the system will be fully

tested in the future by analyzing its ability to specifically

reject low frequency interfering signals that would otherwise

be classified as one of the prescribed tongue actions.
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