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Abstract— High resolution mapping of electrical activity is
becoming an important technique for analysing normal and
dysrhythmic gastrointestinal (GI) slow wave activity. Several
methods are used to extract meaningful information from the
large quantities of data obtained, however, at present these
methods can only be used offline. Thus, all analysis currently
performed is retrospective and done after the recordings have
finished. Limited information about the quality or characteris-
tics of the data is therefore known while the experiments take
place. Building on these offline analysis methods, an online
implementation has been developed that identifies and displays
slow wave activations working alongside an existing recording
system. This online system was developed by adapting existing
and novel signal processing techniques and linking these to
a new user interface to present the extracted information.
The system was tested using high resolution porcine data,
and will be applied in future high resolution mapping studies
allowing researchers to respond in real time to experimental
observations.

I. INTRODUCTION

There is an underlying bioelectrical slow wave activity that
has an important role in the coordination of gastrointestinal
(GI) contractions, and several motility disorders have been
linked to dysrhythmic slow wave behaviour. High resolution
multi-electrode mapping is an established technique for char-
acterising this slow wave behaviour and provides insights
into the role of electrical activity in health and disease [1],
[2].

Current analysis of high resolution GI recordings is per-
formed offline, after recordings are completed. Analysis
requires marking the activation times of each slow wave on
each electrode. The few online analysis systems that cur-
rently exist are unable to provide the spatio-temporal detail
that high resolution studies are capable of [3]. However,
being restricted to offline analysis imposes several important
limitations. Simple issues such as poor electrode contact
can unknowingly compromise a study, and an online system
would allow such issues to be corrected while mapping.

An online system could also facilitate the monitoring of
activity as it occurs by identifying slow wave events as the
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recordings are being taken. For instance, it may become
apparent from the slow wave activity detected and displayed
that the electrode platform is not optimally placed over the
area of interest, and with that information the electrodes
could be moved as required. An online system would enable
dynamic experiments such as trials of targeted interventions
in response to specific dysrhythmias. Online systems are now
widely used in cardiac electrical mapping and this includes
the mapping and clinical management of cardiac arrhythmias
(Ensite System, St. Jude Medical, Inc., MN, USA).

II. IMPLEMENTATION

Existing recording in our laboratory is performed with
a Biosemi system and the associated ActiView recording
software (Biosemi, Amsterdam, The Netherlands), recording
up to 256 channels in a high-resolution (HR) array using
unipolar electrodes [4]. This software has a TCP server
feature that allows clients to connect to it while running and
be streamed the raw data through a socket. Using this feature,
a separate program running either on the same machine
or a separate machine that is on the same network can
receive data at the same time as it is being recorded, without
disrupting the recording. The feature was used to create
a Python program that receives and decodes the raw data
and then processes it using appropriate detection methods to
identify recording problems and identify slow wave events,
and presents this information to the user.

The concise but informative presentation of information
to the user is critical to the success of the online system.
HR mapping provides detailed spatio-temporal information
but in an online system the user must interpret any provided
information at the same rate it is being recorded. Computer
animations were chosen as the primary method for com-
municating with the user, as they are able to convey large
quantities of information while being insensitive to noise as
the user readily filters isolated noise visually [5].

A. Slow wave detection

Detecting slow waves requires the identification of ac-
tivation times in each electrode independently. The falling
edge variable threshold (FEVT) algorithm [6] has been used
to effectively identify large numbers of gastric slow waves
offline, after recordings have been taken. Due to its high
positive predictive value and low number of false positives,
this method was chosen to be implemented in an online
context to detect slow wave events as they are being recorded.

There are four aspects to the FEVT method that were
implemented: the downsampling and filtering of the raw
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signal, the calculation of a transform that accentuates slow
waves events, the calculation of a threshold and the selection
of points that are slow waves.

1) Filtering: The signals were recorded at a frequency of
512 Hz and received slightly after they were recorded. These
were downsampled to 32 Hz for consistency with the FEVT
method and to reduce the quantity of data being processed,
such that for every 16th received sample the downsampler
yields a new value (for each channel). These downsampled
values were then filtered using a lowpass butterworth filter
with a passband edge frequency of 0.5 Hz and a stopband
edge frequency of 4 Hz, as the target signals are in a range
below this frequency.

An estimate of the baseline for each signal was removed
using a high pass filter with an edge frequency of 1/60 Hz
to remove the slow baseline wander [6].

2) Detection Signal: As described by Erickson [6] the
downsampled and filtered signals {Vi : i ∈ N} have a non-
linear energy operator (NEO) [7] transformation applied to
them (1).

NEO(Vi) = ViVi − Vi−1Vi+1 (1)

This was then smoothed with a moving average filter with
width of one second, or 32 samples at 32 Hz to give a
smoothed transform, referred to as the SNEO signal St.

The incoming signals were also convolved with an edge
detect kernel that gave a positive response when the input
signal dropped, and is referred to as Et. The detection signal
was then calculated as the element-wise product of St and Et

where that product is positive and zero where it is negative
(2).

Ft =

{
StEt if StEt ≥ 0

0 ifSTEt < 0
(2)

This resulted in a detection signal that is in practice com-
monly zero, as StEt was less than zero a large proportion
of the time, and is equal to or very close to zero more than
half of the time as the typical example in Fig. 1 shows.

3) Variable Threshold: The variable threshold was cal-
culated from the detection as a type of median absolute
deviation (3).

MAD(X) = mediani(|Xi −meanj(Xj)|) (3)

The threshold at a particular point in time is calculated
as the median absolute deviation of the detection signal
in a window surrounding that point in time, multiplied
by a tunable scalar parameter. The width of the window
that was found to be most effective was 30 seconds (15
seconds forward and 15 backward), or 960 samples at 32
Hz. The most effective scalar multiplier was 5.9 [6]. Using
the definition for the median absolute deviation described in
(3) took a large amount of processing time, as the absolute
operator meant that it was not possible to simply retain a
sorted structure and update it at each step.

However, it was observed that in the majority of channels
the detection signal was either zero or very close to zero
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Fig. 1. A gastric slow wave signal (A) and the corresponding detection
signal St (B). Note that St is zero or very close to zero a large proportion
of the time, and the spikes in (B) correspond to the slow wave events in
(A).

(Fig. 1), and in such cases the threshold was very close to
the signal mean multiplied by the same scalar parameter. If
the majority of the signal values in the window were zero the
median absolute deviation (3) was equal to the signal mean,
and if more than half were close to or equal to zero then the
median absolute deviation was very close to the signal mean.
Calculating a moving mean of the signal was much less
computationally intensive than the median absolute deviation
defined above and this was used instead.

4) Marking Events: As prescribed by the FEVT method
[6], times at which the detection signal exceeded the thresh-
old were classed as potential slow wave events. The method
used in this online system differs from that described as part
of the FEVT algorithm in the way in which slow wave events
were identified from these potential points.

The method used online similarly defines a set of potential
times based on the detection signal F and threshold T (4).

u = {t | F (t) ≥ T (t)} (4)

Differing from the FEVT method, slow wave events were
identified from these potential times using a time window
of half width tlim. The elements of u that have the greatest
magnitude detection signal F (t) of any other element in u
within the time threshold were identified as the exact time
of a slow wave.

This half width was a tunable parameter but its purpose
was to prevent multiple slow waves being identified within
too close a time period, as typically several points during
a slow wave are identified as potential slow wave events.
To select just one, this parameter should be at least as long
as the expected length of a slow wave event (for example 2
seconds) and at most as long as the time between subsequent
slow wave events (for example 10 seconds for slow waves
at 6 cycles per minute).
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B. Channels with high false positive (FP) rates

There are situations in which a section from a recording
can have a high false positive rate but few true positives
and few false negatives. Automatically identifying these bad
channels is desirable as they can be indicative of a poor
electrical connection or a loss of contact with the serosa.
If a single channel were classified as being bad it may be
difficult or unnecessary to address the problem, but if a large
section of the electrode array consists of bad channels then
knowing this when the experiment is taking place gives the
operators the opportunity to check the connections or adjust
the array for better contact.

A moving estimate of the kurtosis k(V ) of a window from
a signal V , defined in (5), was trialled and was observed to
correctly identify many bad channels while rarely classifying
a good channel as bad. The kurtosis was calculated after the
signals had been filtered to remove noise and also after the
baseline wander had been removed. In good channels, the
signal voltage generally had a small range, with occasional
large perturbations corresponding to slow wave events. In
contrast, many bad channels had a consistent variation about
some mean value, especially those that had high components
of random noise or those that were just picking up a
sinusoidal ventilator signal.

k(V ) =
|V |

∑
v∈V (v −mean(V ))4

(
∑

v∈V (v −mean(V ))2)2
− 3 (5)

The kurtosis was calculated for a set of samples for each
channel for a sliding window of sufficient length to contain
several slow wave events (if such events were present). A
kurtosis threshold and time parameter were defined, and the
status of a channel was changed (from bad to good or good to
bad) when the kurtosis was less than (to be classified as bad)
or greater than (to be classified as good) the threshold for a
period of time greater than this time parameter. In practice
these thresholds can be set in such a way that most (but
not all) bad channels are detected, while rarely incorrectly
marking good channels as bad. A kurtosis threshold of 0
and a time parameter of 4 seconds were found to be most
effective at classifying bad channels.

C. Graphical Display

The user is presented with a plot that can show either the
electrode traces from a single row or single column from
the array. Channels on this are marked as either good or bad
as their classification changes. The user can rapidly change
which row or column is being viewed, so if desired could
check each channel by viewing every row or column.

The user is also presented with two-dimensional animated
maps, with cells corresponding to the electrodes, and these
are able to show a range of information. A map shows wave
events as they are detected, which allows the user to see
slow waves move through the array. The map also shows
good and bad channels as their classifications change. The
user is also able to see information such as the detection
signal magnitude, the amplitude of wave events, the current

Fig. 2. An example of a user interface configuration showing an activation
animation (top) and a 60 second trace of the top row of electrodes (bottom).
The red bar in the trace indicates the time of the data in the animation, and
the green vertical lines indicate detected slow waves. Red electrodes at the
top indicate bad channels, and the green indicates the time since the last
activation. Bright green indicates a current activation and black indicates no
activation in more than 2 seconds.

moving kurtosis value and several other types of information.
Some of these data, such as the current kurtosis value, give a
more responsive representation of what is occurring, but are
often more subjective to interpret than for example the wave
event animations or bad channel classification. It is possible
to overlay such animations, though only some combinations
(such as wave events and good/bad classification) can be
meaningfully interpreted.

III. RESULTS

An online slow wave detecting system was built, and a
user interface created (Fig. 2) that conveys information to
the user as a study is being performed.

A. Delay

The slow wave detection system is non-causal, in that
determining whether or not a slow wave occurs at time
t requires knowledge of the input signal at time t + d.
Practically, this means that when a signal at time t is recorded
it becomes possible to determine whether or not there was a
slow wave event at time t−d, where d is the delay inherent to
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the detection system. For offline analysis this is not important
but in an online setting it can be significant.

1) Wave Event Delay: The calculation of the NEO (1)
requires knowledge of the next input value, so at 32 Hz
this induces a delay of 1/32 seconds. However this is then
smoothed with a centred moving average filter which induces
a further delay of 0.5 seconds.

Of greater significance, the threshold requires the future
15 seconds of detection signals and this is the source of the
majority of the delay in the system. The other source of
significant delay is the final marking of events described in
Section II-A.4 which requires all of the potential slow wave
events in the future 3 seconds to decide whether to accept
or reject a current potential slow wave as a true slow wave.

2) Bad Channels Delay: The delay associated with the
detection of bad channels is more difficult to quantify. The
measure that is used uses a moving estimate of the kurtosis
in large window and the delay for a channel to change is
at most the length of this window. However, in practice the
status tends to change earlier. As slow waves enter a window
that previously contained no slow waves the kurtosis rises
immediately, and the classification can change after only a
short delay.

B. Validation

1) Detection Method: Tests were performed using data
acquired from a porcine gastric slow wave mapping study
[8]. Though the methods for detection were created for use
in an online system, they can also be used directly on a
prerecorded file. Instead of producing output in the form of
a visualization the output of the analysis can be saved to file.
Using this method, prerecorded data were analysed with this
system and the output was compared to analysis done by
hand and with existing offline techniques. As the method
used was very similar to the FEVT algorithm, results were
found to be very similar.

2) Online acquisition and display: When used online, the
detection methods use streamed data from a network socket.
These data were the same as the data that the recording
software saves to file. A test program was written that reads
data from prerecorded files and streams that data to a socket
in the same way that the recording software does, emulating
its operation. Tests could then be performed with a system
that acted in the same way as the recording software and
system (as it would act when recording data), requiring
no hardware but rather software and data files. The data
acquisition system, detection system and display were tested
in this way with prerecorded data from porcine gastric slow
wave studies.

C. Accuracy

When used for offline analysis the FEVT method has a
positive predictive value of 0.93 and sensitivity of 0.94-0.96
[6]. In channels where slow waves were present the results
for the online system are similar (in an eight channel 400
second recording the positive predictive value was 0.92 and
the sensitivity was 0.95). The most common cause of false

positives were situations where there was a large gap between
subsequent slow waves. The threshold became low in this
situation and sudden drops in signal voltage were incorrectly
identified as slow waves.

In channels with no slow waves it was found that many
false positives are detected. The presence of any uncommon
slow wave-like change in voltage was detected, as the criteria
for slow wave identification relies on there being true slow
waves present for comparison. If there are none, the methods
perform poorly and for that reason detection of such bad
channels is important, and the bad channel detection method
is able to to correctly identify many channels of this sort.
For analysis offline that is less important as such channels
can be removed by hand.

IV. DISCUSSION

This work presents a new framework for the online analy-
sis of multi-electrode GI slow wave recordings. Analysing
these signals online will complement the offline analysis
and provide experimental benefits. Detecting poor quality
recordings early or detecting opportunities to better target
areas of interest will improve experimental outcomes. Be-
cause the system provides accurate spatio-temporal detail
with only modest lag new experiments may be possible
where experimental protocols change in response to dynamic
changes in electrical activity.
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