
  

  

Abstract—In this study, a new entropy measure known as 
kernel entropy (KerEnt), which quantifies the irregularity in a 
series, was applied to nocturnal oxygen saturation (SaO2) 
recordings. A total of 96 subjects suspected of suffering from 
sleep apnea-hypopnea syndrome (SAHS) took part in the 
study: 32 SAHS-negative and 64 SAHS-positive subjects. Their 
SaO2 signals were separately processed by means of KerEnt. 
Our results show that a higher degree of irregularity is 
associated to SAHS-positive subjects. Statistical analysis 
revealed significant differences between the KerEnt values of 
SAHS-negative and SAHS-positive groups. The diagnostic 
utility of this parameter was studied by means of receiver 
operating characteristic (ROC) analysis. A classification 
accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) 
was achieved. Repeated apneas during sleep increase 
irregularity in SaO2 data. This effect can be measured by 
KerEnt in order to detect SAHS. This non-linear measure can 
provide useful information for the development of alternative 
diagnostic techniques in order to reduce the demand for 
conventional polysomnography (PSG). 

I. INTRODUCTION 

OCTURNAL polysomnography (PSG) is considered the 
gold-standard for sleep apnea-hypopnea syndrome 
(SAHS) diagnosis [1]. Different physiological 

recordings and data are monitored during this test including 
electrocardiogram (ECG), electroencephalogram (EEG), 
electromyogram (EMG), electrooculogram (EOG), airflow, 
respiratory effort, or oxygen saturation (SaO2) [2]. These 
recordings are manually analyzed by a sleep specialist in 
order to detect apneas (complete cessation of airflow for 10 
seconds or longer) and hypopneas (marked reduction in 
airflow accompanied by a desaturation of at least 4%) [3]. 
The apnea-hypopnea index (AHI), which reflects the 
number of apnea/hypopnea episodes per hour of sleep, is 
derived from PSG recordings. Finally, it is used to evaluate 
SAHS severity. 
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Apnea events are usually accompanied by hypoxemia, 
arrhythmias and arousals. The cardinal symptom of SAHS is 
daytime sleepiness due to sleep fragmentation. It has been 
pointed out as a major cause of traffic and industrial 
accidents. Moreover, SAHS is associated to the initiation or 
progression of cardiovascular and cerebrovascular effects. 
Thus, early detection is required to prevent other health 
complications through appropriate treatment. The 
prevalence of SAHS has been estimated between 1 and 5% 
of adults in western countries [4]. During the last years, 
doctors and general public have become aware about SAHS, 
leading to a growing demand for PSG studies. Therefore, the 
capacity of the currently available sleep units is being 
overwhelmed [5]. Additionally, PSG is highly complex, 
expensive and time-consuming, which motivates the search 
for alternative diagnostic techniques. 

Nocturnal pulse oximetry, which enables SaO2 signals to 
be monitored in a non-invasive manner, can be used to study 
respiratory dynamics during sleep [6]. The saturation value 
decreases due to reduction of airflow. As a result, SaO2 
recordings from SAHS-positive patients are characterized by 
marked fluctuations due to desaturation events, which reflect 
unstable ventilation [7]. In contrast, healthy respiratory 
patterns tend to present a near-constant SaO2 waveform 
around 96% [6]. 

Preceding studies evaluated the diagnostic utility of SaO2 
signals. Conventional oximetry indices such as the oxygen 
desaturation index over 3% (ODI3) or 4% (ODI4), the 
cumulative time spent below 90% of saturation (CT90) or 
the Δ index were proposed for automated analysis of these 
recordings [6]. Additionally, signal processing methods 
were used for this purpose. Significant differences were 
found between SAHS-negative and SAHS-positive 
populations through spectral analysis of SaO2 signals [8]. 
Furthermore, non-linear methods have been pointed out as a 
useful tool to study SaO2 dynamics. Approximate entropy 
(ApEn), central tendency measure (CTM) and Lempel-Ziv 
complexity (LZC) were used to assess irregularity, 
variability and complexity of oximetry data, respectively [9, 
10]. 

In the present study, a different entropy measure known 
as kernel entropy (KerEnt) was applied to SaO2 signals in 
order to assess their irregularity. KerEnt is obtained by 
incorporating the quadratic Renyi entropy into the concept 
of entropy rate [11]. The Renyi entropy rate was previously 
used to quantify the Gaussianity present in heart rates [11]. 
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The aim of this study is to analyze the relationship between 
SAHS and irregularity of SaO2 data measured by KerEnt. 

II. SUBJECTS AND SIGNALS 
A total of 96 subjects took part in the study. All of them 

were suspected of suffering from SAHS because of daytime 
sleepiness, loud snoring or apnea events reported by the 
subject or a bedmate. Subjects underwent PSG from 
midnight to 08:00 AM in the Sleep Unit of Hospital Río 
Hortega, Valladolid, Spain. The Review Board on Human 
Studies approved the protocol and each subject gave his 
consent to participate in the study. Patients were 
continuously monitored using a polysomnograph (Alice 5, 
Respironics, Philips Healthcare, The Netherlands). A Nonin 
PureSAT pulse oximeter (Nonin Medical Inc., USA) was 
used to record oximetry signals at a sampling frequency of 1 
Hz. We removed drops to zero due to poor contact with the 
finger probe. Signals were saved to separate files to be off-
line processed. 

A medical expert analyzed PSG recordings according to 
the rules proposed by Rechtschaffen and Kales [12]. A 
threshold given by AHI = 10 h-1 was used for a positive 
diagnosis of SAHS. Table 1 summarizes the demographic 
and clinical data for the population under study. 

III. METHODS 

A. Renyi entropy 
The family of Renyi entropies is defined as [13]: 
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where α > 0 denotes the order of the entropy. Specifically, 
the computation of KerEnt is based on the Renyi entropy of 
order 2 (α = 2), which is termed the quadratic entropy. The 
Parzen window method with Gaussian kernels can be used 
to estimate the probability density function p(x). Assuming 
spherical Gaussians, i.e. with a covariance matrix given by 

2 IσΣ = , the quadratic entropy is computed as: 
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where G(x,Σ) denotes the zero-mean Gaussian kernel with 
covariance matrix Σ evaluated at point x. 

B. Kernel Entropy 
KernEnt is defined from the incorporation of the quadratic 

entropy into the entropy rate framework. The entropy rate of 
an infinite random sequence X1, X2, X3, …, denoted by X, is 
given by the following expression [11]: 
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where H(X1, X2, …, XN) denotes the joint entropy of N 
random variables. For finite series, estimating the entropy 
rate depends on the estimate of its density of order m. The 
entropy rate (Hm) can be viewed as the rate of information 
creation and is estimated as [11]: 

 
( ) ( )1m m mH H H+= −X X ,       (4) 

 
where Xm is the template of order m from the original 
sequence. KerEnt can be viewed as an approximation to the 
Renyi entropy rate and is given by: 
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Appropriate values of m and σ need to be found. The 

choice for m is similar to other entropy measures. The same 
cannot be said for the window width parameter σ. However, 
there exist different methods for choosing appropriate σ. In 
this study, the estimation procedure proposed by Zhang et 
al. [14] was applied. It allows automated selection of the 
width parameter from a Bayesian approach using Markov 
Chain Monte Carlo (MCMC). The method aims to minimize 
the distance, measured by the Kullback-Liebler (KL) 
information, between the target density p(x) and the 
approximation p*(x): 
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where x denotes a point in the m-dimensional space. This 
criterion is equivalent to the maximization of the second 
term in (6), which can be approximated by: 
 

TABLE I 
DEMOGRAPHIC AND CLINICAL DATA FOR SUBJECTS UNDER STUDY 

 Group 
 All SAHS positive SAHS negative 

Subjects (n) 96 64 32 
Age (years) 52.4 ± 13.8 54.9 ± 14.5 47.3 ± 10.6 
Males (%) 77.1 84.4 62.5± 

BMI (kg/m2) 29.8 ± 4.2 30.6 ± 3.9 28.3 ± 4.4 
RT (h) 7.3 ± 0.3 7.3 ± 0.4 7.3 ± 0.3 

AHI (h-1) 24.8 ± 25.2 35.0 ± 25.2 4.2 ± 2.2 
Data presented as mean ± standard deviation. SAHS-positive/ SAHS-

negative: patients with a positive/negative diagnosis of sleep apnea-
hypopnea syndrome; BMI: body mass index; RT: recording time; AHI: 
apnea-hypopnea index calculated for hourly periods. 
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where D denotes the set of samples xi, i = 1, …, n. Solving 
this maximization problem requires a numerical procedure, 
which becomes increasingly difficult to implement as the 
dimension increases. In a Bayesian framework, the 
components (σ) of the covariance matrix Σ are treated as 
parameters and the most probable value of σ given data in D 
is used as optimum. This value is obtained by sampling from 
the posterior probability ( )p Dσ . The Metropolis-Hastings 

algorithm was used for this purpose [15]. 
From the Bayes’ theorem, the posterior probability of σ 

given data in D satisfies: 
 

( ) ( ) ( )p D p D pσ σ σ∝ .      (8) 

 
Since σ is considered as a parameter, the expression in (7) 
represents the logarithmic likelihood of observing the set D 
given σ, i.e., the first term in (8). On the other hand, the 
following form is assumed for the prior p(σ) [14]: 
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where λ controls the shape of the function. This prior aims 
to avoid high values of σ, for which the associated 
probability is small. 

IV. RESULTS 

A. Parameter selection 
The meaning of parameter m in KerEnt is the same as in 

other entropy measures. As suggested by Pincus, m = 1 and 
m = 2 are appropriate for entropy estimation [16]. Therefore, 
a standard approach with m = 2 was adopted in our study. 
On the other hand, several user-dependant parameters have 
to be defined to compute the optimum σ using the MCMC-
based method. As proposed by Zhang et al. [14], the 
hyperparameter λ was set to 5. Additionally, the variance of 
the proposal distribution for the Metropolis-Hastings 
algorithm was set to 0.015 in order to get an acceptance rate 
for samples between 20% and 30% [14]. Finally, we 
performed convergence analysis on several SaO2 signals to 
find appropriate values for the number of samples to be 
omitted, the number of samples to be retained and the 
starting σ  used for the sampling method. From our analysis, 
we set both the burn-in period and the number of total 
recorded iterations to 5000. The initial σ for the sampling 
process was set to 1% of the standard deviation of the series. 

B. KerEnt analysis 
Oximetry recordings may present a non-stationary 

behavior. Therefore, signals were divided into epochs of 512 
samples to estimate KerEnt. The entropy values from all the 
epochs were averaged to compute the final KerEnt estimate 
for each signal. Fig. 1 depicts KerEnt values for each of the 
epochs in a 4-hour period from a SaO2 signal. The AHI of 
the corresponding subject was 13.1 h-1. The figure shows 
that epochs with increased instability were associated to 
higher KerEnt, reflecting more irregularity in the series. 

We analyzed the difference between KerEnt in SAHS-
negative and SAHS-positive groups in order to assess its 
utility to characterize SAHS. The mean KerEnt in the 
SAHS-negative group was -0.18 ± 0.39 whereas it was 0.27 
± 0.41 for SAHS-positive patients. These results reflect that 
more irregularity is associated to SaO2 recordings from 
SAHS-positive subjects due to repeated apneas. We found 
statistically significant differences between both groups (p < 
0.001) using the non-parametric Kruskal-Wallis test. Fig. 2 
shows the box plots for KerEnt values in SAHS-negative 
and SAHS-positive groups. The box plot provides a 

 
Fig. 1. Evolution of KerEnt for a 4-hour period from a SaO2 signal. 
 

 
 
Fig. 2. Box plot for KerEnt values in SAHS-negative and SAHS-
positive groups.

1747



  

graphical summary of the data. Visual inspection of these 
plots reflects a clear difference between KerEnt values in 
both populations. Additionally, receiver operating 
characteristic (ROC) analysis was performed to evaluate the 
diagnostic ability of KerEnt. Several decision thresholds 
were evaluated by varying it along the range of KerEnt 
values. The pair sensitivity-specificity was computed for 
each of them. The highest diagnostic accuracy was achieved 
by applying a decision threshold of -0.02 to the obtained 
KerEnt. A correct diagnosis was provided for 81.25% of 
subjects (81.25% sensitivity and 81.25% specificity). The 
area under the ROC curve (AUC) was 0.87. 

V. DISCUSSION AND CONCLUSIONS 
In this study, we propose to measure irregularity in SaO2 

signals corresponding to subjects suspected of suffering 
from SAHS by means of KerEnt. This method was applied 
to 96 SaO2 recordings from 32 SAHS-negative and 64 
SAHS-positive subjects. The analysis of our results reflects 
higher irregularity associated to SaO2 recordings from 
SAHS-positive patients. Indeed, KerEnt provided significant 
differences between SAHS-negative and SAHS-positive 
groups. A classification accuracy of 81.25% and an AUC of 
0.87 were achieved. 

Our study reveals that KerEnt analysis of SaO2 data 
provides useful information about SAHS. Higher KerEnt 
values were associated to oximetry signals from SAHS-
positive subjects, reflecting the influence of apnea events on 
SaO2 dynamics. Therefore, the evaluation of oximetry data 
by means of KerEnt can be used to distinguish between 
SAHS-negative and SAHS-positive subjects. Sensitivity and 
specificity achieved by comparing KerEnt with the optimum 
decision threshold were 81.25%. We checked that 6 SAHS-
negative subjects were misdiagnosed using KerEnt. Their 
mean AHI was 4.7 h-1 and three of them were mild-SAHS 
cases (i.e. they presented 5 h-1 ≤ AHI ≤ 15 h-1). On the other 
hand, an incorrect decision was made for 12 SAHS-positive 
subjects in our database. Their mean AHI was 20.12 h-1. 
Moreover, it should be noted that 5 of these subjects 
presented AHI < 15 h-1. 

Our results are coherent with other previous studies based 
on entropy analysis of oximetry recordings. Hornero et al. 
[9] analyzed SaO2 signals using ApEn. It is the first study 
where the risk of suffering from SAHS was associated to 
increased entropy of oximetry data. ApEn requires the run 
length parameter (m) and the tolerance (r) to be adjusted by 
the user. Previous studies indicate the range of appropriate 
values for m [16], which are also valid for KerEnt. However, 
a thorough analysis is required to optimize r. In contrast, 
entropy analysis by means of KerEnt enables the bandwidth 
(σ), which can be interpreted as the equivalent to r, to be 
automatically selected using Bayesian techniques. 

Some limitations can be found in our study. We showed 
that KerEnt from oximetry data is related to SAHS. 
However, the achieved accuracy (81.25%) may be 

excessively low for diagnostic purposes. Therefore, KerEnt 
measures could be combined with other non-correlated 
parameters from SaO2 signals in order to increase diagnostic 
accuracy. In addition, a larger database would be required to 
provide a more accurate evaluation of the proposed method. 

In summary, we found that KerEnt analysis of SaO2 
signals provides useful information about SAHS. Our results 
were coherent with previous studies focused on ApEn 
analysis of oximetry data. KerEnt can be used to detect 
increased irregularity due to repeated apneas in SAHS-
positive patients. Therefore, KerEnt measurements can be 
considered to build new alternative methods for SAHS 
detection in order to reduce the demand for conventional 
PSG. 
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