
 

  

Abstract— Snoring sounds is commonly known to be 

associated with obstructive sleep apnea (OSA). There are many 

studies trying to distinguish between the snoring sounds of non-

OSA and those of OSA patients. However, OSA is only one of 

the conditions that affect the structure of upper airway. In this 

study, we investigated the effect of anthropometric parameters 

on the snoring sounds. Since snoring sounds are non-Gaussian 

signals by nature, we derived its Higher Order Statistical 

(HOS) features and investigated the statistical significance of 

the anthropometric parameters on each of these features. Data 

were collected from 40 patients with different levels of OSA. 

Tracheal respiratory sounds collected by a microphone placed 

over suprasternal notch, were recorded simultaneously with 

full-night Polysomnography (PSG) data during sleep. The 

snoring segments were identified semi-automatically from 

respiratory sounds using an unsupervised snore detection 

algorithm. The bispectrum of each SS segment was estimated. 

We calculated two common HOS measures, Skewness and 

Kurtosis, plus a new feature called Projected Median 

Bifrequency (PMBF) from the SS segments. Then, we 

investigated the statistical relationship between these features 

and anthropometric parameters such as height, Body Mass 

Index (BMI), age, gender, and Apnea-Hypopnea Index (AHI). 

The result showed that gender, BMI, height, and AHI are the 

parameters that do change the characteristics of snoring 

sounds significantly.  

 

I. INTRODUCTION 

NORING is a very common disorder that increases with 

age. Overall, 20-40% of the general population snore 

during sleep [1]. By age of 60, snore prevalence increases to 

60% in male and 40% in female gender [2]. It is commonly 

known to be associated with obstructive sleep apnea (OSA) 

[3]. There are many studies [4-7] trying to distinguish 

between the snoring sounds of non-OSA and those of OSA 

patients. However, OSA is only one of the conditions that 

affect the structure of upper airway. Hence, the aim of this 

study was to investigate the effect of anthropometric 

parameters on the snoring sounds.  

Different tasks such as investigation of obstruction in the 
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upper airway [8, 9], assessment of the outcome of surgical 

treatment [10-12], classification of snorers as simple snorer 

or OSA patients [13, 14], and automatic detection and 

classification of snoring episodes [15, 16] utilize acoustical 

analysis of snoring sounds. 

Most of the signal processing techniques used for snoring 

sound analysis, such as autocorrelation/autocovariance 

function [13, 15], power spectrum density (PSD) [17-19], 

and autoregressive (AR) modeling [13, 18] are based on a 

linear model of snoring sound. These 2
nd

 order statistical 

techniques such as spectral analysis assume that the signal-

generating process is Gaussian and linear; moreover, the 

signal's phase information is ignored. 

If the signal of interest, i.e. snoring sounds, violates one of 

the above assumptions, one should take into account an 

alternative technique. Higher order statistics (HOS) 

techniques reveal information on not only amplitude of a 

signal, but also its phase. Furthermore, if a signal generated 

from a non-Gaussian process is received along with additive 

Gaussian noise, a transformation to higher order cumulant 

domain would be blind to the noise; hence, achieving a 

cleaner estimate in noisy environments. 

HOS analysis was used in [20] as a tool for screening 

OSA among snorers. However, to date, there was no study 

investigating the relationship between HOS properties of 

snoring sounds and anthropometric parameters of snorers. 

This paper discusses this relationship. The bispectrum of 

each snoring sound (SS) segment of data were estimated. 

We derived a new feature called Projected Median 

Bifrequency (PMBF), and also calculated skewness and 

kurtosis values of the SS segments. Then, we investigated 

the statistical relationship between theses features and 

anthropometric parameters of 40 snorers using Kruskal-

Wallis Analysis of Variance (KWAV). 

II. METHOD 

A. Data Recording  

Forty individuals (8 females, 33 to 67 years old) with an 

average age of 49.8±10.7 years, who were referred to full-

night Polysomnography (PSG) at the Health Science Center, 

Winnipeg, participated in this study. The study was 

approved by the Biomedical Research Ethics Board of the 

University of Manitoba. Simultaneously with the PSG, the 

participants’ respiratory sounds signals were recorded by a 

microphone (ECM-77B with high-performance frequency 

response of 40 Hz-20 KHz) placed over the suprasternal 

notch of trachea. Table I shows the participants’ 
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anthropometric information. The apnea/hypopnea index 

(AHI) of each subject was determined by the PSG study; 8 

individuals had AHI≤5 (simple snorers) and 32 had OSA 

with various degrees of severity (AHI values from 5.7 to 

125.7). 
TABLE I 

ANTHROPOMETRIC INFORMATION OF PARTICIPATING INDIVIDUALS 

Group 
Number of 

subjects 
Age 

Body mass 

index 
AHI 

OSA  32 (7 females) 49.6± 10.8 34.5± 6.8 34.7±35 

Simple 

Snorers 
8 (1 females) 50.6±11.2 30.4± 3.7 2.2±1.4 

As known, the respiratory sounds of a snorer consist of 

breath, loud vibratory sounds (perceived as snore by 

humans), and/or small segments of silence [15]. We call the 

part of respiratory sound containing snore (or loud vibratory 

sounds) as Snoring Sound (SS) segment. The length of each 

SS segment varies within and between the subjects. 

The automatic algorithm proposed in [16] was used to 

extract the SS segments in a semi-automated manner. An 

example of the selection method is as the following: the PSG 

data provided information about the time (e.g. 3:00-3:45 am) 

when the patient X was snoring. Given this information the 

snore detection algorithm proposed in [16] was run either on 

the entire interval (if < 15 minutes) or on a 15-minute 

interval (if > 15 minutes). The snoring intervals shorter than 

5 minutes were neglected. Overall 18143 of SS segments 

from all patients were analyzed, which on average 

corresponded to 9.1±3.8 min of snoring intervals per patient. 

The extracted SS segments for each patient were used to 

estimate the bispectrum and derive the desired features. It 

should be noted that the bispectral analysis was only 

performed on the SS segments. 

B. Higher order statistics (HOS) 

Assume that �(�) is an extracted SS segment (in general a 

random process). The key assumption underlying the HOS 

analysis is that the process �(�) is stationary in some sense 

[21]. Snoring sounds are non-stationary in nature [18]. 

Hence, all the HOS measures such as bispectrum and 

bicoherence should be calculated on a short time-windowed 

version of the signal to ensure wide-sense stationarity of the 

SS segments. 

1) Definition of Bispectrum and Bicoherence 

The 2
nd

 and 3
rd

 order cumulants of a zero-mean stationary 

process are defined by: 

��(�) = 	
�∗(�)�(� + �)
, (1) 

��(�, �) = 	
�∗(�)�(� + �)�(� + �)
, (2) 

where �(�) is a zero mean stationary process, �, �, and � 

are different time increments, * refers to complex conjugate 

operator, and �� and �� denote 2
nd

 and 3
rd

 order cumulants 

respectively [22]. The 2
nd

 and 3
rd

 order polyspectrum are 

defined as the Fourier transform of �� and ��, respectively 

[22]: 

�(�) = � ��(�)������ 
!"

 #�"
, (3) 

%(�&, ��) = � � ��(�, �)������' ������()
!"

)#�"

!"

 #�"
, (4) 

where �(�), %(�&, ��) represent the PSD and bispectrum, 

respectively. In practice, the number of sound samples is 

finite; hence, the HOS measures need to be estimated from 

available data. In this study, the direct approach [21], which 

is an extension of the Welch technique for power spectrum 

density estimation, was used to estimate the bispectrum 

(%+(�&, ��)).  

The discrete bispectrum has many symmetries in (�&, ��) 

plane. It is only needed to calculate %+(�&, ��) in the non-

redundant region or principal domain (,) which is defined 

as: , = 
0 < �& ≤ �0
� , 0 < �� ≤ �&, 2�& + �� ≤ �1
 [23]. 

C. Feature Extraction 

Suppose that we estimated the bispectrum (%+(�&, ��)) in 

,. This section details on deriving PMBF defined in section 

I. 

1) PMBF 

Median Bifrequency (MBF) is the bifrequency where the 

summation of absolute values of %+(�&, ��) becomes half of 

the summation of absolute value of %+(�&, ��) over all 

bifrequencies in ,. In fact, the procedure looks like: 

1. Calculate the summation of |%+(�&, ��)| at all 

bifrequencies in ,.  

%3 = � � |%+(�&, ��)|
�(�'

  ,         �&, �� ∈ ,,    (5)  

2. Set �& = 0.  

3. For all bifrequencies (�&, ��) satisfying the condition 


0 < �� ≤ �&, 2�& + �� ≤ �1
 calculate: 

6%(�&, ��) =  � �7%+(�&, ��)7
�(�'

,       (6) 

4. Check if 6%(�&, ��) ≥ &
�  %3   

If YES, end the algorithm and :�&
;<, ��

;<= = (�&, ��) 

If NO, increase �& and go to step 3. (Note 

that:�&;>? = �0
� .) 

Once the MBF is computed, the PMBF, �<, can be 

determined by the projection of :�&
;< , ��

;<= onto the 

identity line 
�� = �&,       �&, �� ∈ ,
 corresponding to 

the diagonal slice of the bispectrum. 

2) Skewness and Kurtosis 

Let �(�) be a zero-mean random process. Skewness (@&) 

and kurtosis (@�) are defined as: 

@& = ��(0,0)
A1�

, @� = �B(0,0,0)
A1B

,        (7) 

where A1 is the standard deviation of �(�) and ��(0,0) 

and �B(0,0,0) are its zero-lag 3
rd

 and 4
th

 order cumulants 

respectively [24]. 

3) Calculation of features 

As mentioned in the section II.A, the number of SS 

segments is different for each patient. Let us denote DEF SS 

segment of patient X by �GH ,   D = 1, … , JH. First, (�<)GH, 
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(@&)GH, and (@�)GH for all segment were calculated resulting in 

a finite number of observations for each feature. Then, the 

sample median of each feature set was estimated.  

The reason we used median instead of mean is the 

insensitivity of median to outliers. It is also known that when 

the data is not symmetrically distributed, the median 

outperforms the mean in measuring the middle range of data 

[25]. Our extracted feature sets were not symmetrically 

distributed. 

D. Statistical Analysis 

To investigate the effect of anthropometric parameters 

such as age, gender, height, BMI, and AHI on the extracted 

HOS features, we ran statistical tests assuming the 

significance level as K = 0.05. First, these parameters were 

categorized into different groups. Since the distribution of 

the features deviated from normal distribution, the one-way 

KWAV was used to test the equality of the median of the 

extracted HOS features among different groups. This test is 

the non-parametric counterpart of one-way analysis of 

variance (ANOVA) that assumes normal distribution of the 

variables [26, 27]. Table II shows how the patients were 

grouped based on their anthropometric parameters. 
TABLE II 

THE BOUNDARIES OF GROUPING FOR HEIGHT (H), AGE, APNEA/HYPOPNEA 

INDEX (AHI), AND BODY MASS INDEX (BMI). 

Group 
H(#) BMI(#) Age AHI 

0 ≤170(11) ≤29.9(12) ≤45(11) ≤5(8) 

1 170-180(20) 30-34.9(14) 45-60(26) >5(32) 

2 >180(9) >=35(14) >60(3)  

III. RESULTS 

As shown in Table III, four out of five anthropometric 

parameters significantly affected the HOS features of the SS 

segments. The height of individuals was observed to be a 

significant factor influencing the value of  �< (p < 0.05). 

There was a negative relationship between height and �<. 

The taller the individuals, the lower frequency components 

were in their snoring bispectrum.  

The results of the KWAV test on BMI groups shows that 

BMI significantly affects the value of �< (p < 0.05). We 

observed that the higher the BMI, the lower were the �< 

values. However, as shown in Table III, none of the features 

were significantly different among age groups. It was also 

found that AHI and gender were significant parameters 

affecting the frequency features of the SS segments. The 

individuals with higher AHI had lower frequency-based 

features (�<) (p < 0.05). It was also found that the female 

snorers of this study had higher frequency-based features 

(�<) (p<0.05) than the male snorers. 

IV. DISCUSSION 

In this study, the relationship between anthropometric 

parameters of 40 snorers and the 3
rd

 and 4
th

 order statistical 

features derived from the SS segments were investigated. 

The height has been shown to affect the tracheal sound 

spectral features [28]. It was reported that the tracheal 

sounds in children had higher frequency components than in 

healthy adults. In another study [29], it is shown that the 

anatomy of the trachea determines the characteristic features 

of tracheal sounds. However, there was no study confirming 

the change in the features of SS segments due to the height. 

Based on our findings, the PMBF feature of extracted SS 

segments (�<) is negatively related to the height of 

individuals. Assuming that taller individuals have taller 

neck, this result implies that the characteristics of SS 

segments reflect resonances (existing in SS) that depend on 

the upper airway’s length. 
TABLE III 

KRUSKAL-WALLIS TEST RESULTS FOR FIVE ANTHROPOMETRIC 

PARAMETERS. THE HIGHLIGHTED VALUES ARE THE SIGNIFICANT FACTORS  

Features 

H BMI 

Chi-sq P Chi-sq P 

@& 0.97 0.62 2.84 0.24 

@� 1.53 0.46 3.64 0.16 

�< 7.56 0.023 9.31 0.009 

Features 

Age AHI Gender 

Chi-

sq 

P Chi-sq P Chi-

sq 

P 

@& 0.45 0.8 2.2 0.137 0.71 0.4 

@� 3.87 0.14 0.16 0.69 0.55 0.46 

�< 3.87 0.14 6.14 0.013 4.05 0.04 

As known, obesity is a factor strongly associated with the 

presence of OSA [30]. Obese individuals with sleep apnea 

have been shown [31] to have more (about 42%) fat in their 

cervical region than normal subjects as well as non-obese 

individuals with OSA; hence, resulting in pharyngeal area 

narrowing. It is also known [32] that higher BMI is 

associated with increased level of leptin (a hormone 

produced by the adipose tissue and has also actions on the 

respiratory centre control). Therefore, our observed changes 

in the acoustical properties of the SS segments due to BMI 

can be explained by both anatomical and hormonal changes 

of the upper airway. 

We observed that the SS segments of women consisted of 

higher frequency components than men. This difference was 

significant. Although there was no study investigating the 

gender effect on the snoring sounds, this observation is 

congruent with findings reported in [33, 34] focused on 

breath and lung sounds. According to those studies, breath 

and lung sounds in healthy women contain higher frequency 

components than in men. It has also been shown that men 

have higher pharyngeal and supraglottic resistances than 

women [35]. Hence, given that the size and mechanical 

properties of pharynx are significantly different between 

men and women [36], the snoring sounds of women and men 

can be expected to be significantly different as the results of 

our study indicates. Moreover, these might be also a reason 

for greater incidence of OSA in men [35, 36]. 

The �< feature of SS segments was found to be 

significantly different in snorers with different AHI. This 

result is congruent with previous studies. In people with 

OSA, usually the lateral pharyngeal muscular wall is 
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narrower [37]. Therefore, minimum area of the airway has 

been shown to be significantly smaller in apneic individuals 

than non-OSA people. The size of airway plays a major role 

in the frequency components of the sound produced by the 

flow turbulence in the airway. This explains the change in 

the frequency based HOS feature of the SS segments 

between OSA patients and simple snorers. One important 

point is that these frequency changes due to small changes in 

the airway size may not always be detectable by spectral 

analysis of the sounds. However, as known, HOS techniques 

complement the information obtained from 2
nd

 order 

statistical techniques, i.e. spectral analysis. Hence, we 

propose the use of HOS techniques for snoring sound 

analysis as a better tool to increase the diagnosis accuracy of 

OSA. 
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