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Abstract— An innovative electrocardiogram compression al-
gorithm is presented in this paper. The proposed method
is based on matrix completion, a new paradigm in signal
processing that seeks to recover a low-rank matrix based
on a small number of observations. The low-rank matrix is
obtained via normalization of electrocardiogram records. Using
matrix completion, the ECG data matrix is recovered from
a few number of entries, thereby yielding high compression
ratios comparable to those obtained by existing compression
techniques. The proposed scheme offers a low-complexity en-
coder, good tolerance to quantization noise, and good quality
reconstruction.

I. INTRODUCTION

An ECG is an important physiological signal for cardiac

disease diagnostics. With the increasing use of modern elec-

trocardiogram monitoring devices that generate vast amounts

of data requiring huge storage capacity, ECG compression

becomes mandatory to efficiently store and retrieve this

data from medical database. ECG compression techniques

can be classified into three categories [1]: Direct meth-

ods, transform methods and other compression methods. In

the first category, the ECG samples are processed directly

paying attention to the redundancy among them. In the

second category, the wavelet transform-based methods play

an interesting role due to their easy implementation and

efficiency. The latter works in this area are characterized

by hierarchical tree structures, such as embedded zero-tree

wavelet (EZW) [2] and set partitioning in hierarchical tree

(SPIHT) [3] protocols, which make use of the self-similarity

of the wavelet transform across scales within a hierarchically

decomposed wavelet tree.

An interesting line of research focuses on transforming

the original one-dimensional ECG waveforms into two-

dimensional information, followed by a processing stage

using image processing tools. The idea of these methods

is to exploit both intra-beat and inter-beat correlations. For

example, Lee and Buckley [4] applied the DCT transform

to an ECG data matrix composed of regular heartbeats and

Bilgin [5] applied JPEG2000 compression to a similarly

constructed matrix. Recently, we proposed in [6] a com-

pressed sensing (CS) based ECG compression framework

that utilizes distributed compressed sensing (see [7] and ref-

erences therein) to exploit the inter-beat correlation structure.

Following this line of thought, we propose a bidimensional
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ECG compression scheme based on matrix completion, that

exploits both intra and inter-beat correlations.

Matrix completion refers to the problem of reconstructing

a low-rank matrix from a small set of observed entries

possibly corrupted by noise. Directly solving the rank min-

imization problem is NP hard. However, Candès and Recht

in [8] extend the CS ideas (recovery of sparse signals) to

the completion of low-rank matrices proposing a convex

relaxation to the NP-hard problem by replacing the rank

function with the nuclear norm of a matrix. Recently, many

authors have proposed efficient algorithms for solving the

low-rank matrix completion problem, such as Singular Value

Threshholding [9] and Fixed Point Continuation algorithms

(FPC) [10].

The main assumption of the matrix completion problem

is that, to be recovered, the matrix has to be low-rank. To

meet this requirement, the proposed method starts by forming

a low-rank matrix in which each column corresponds to

a length normalized ECG cycle. In the subsequent step,

the sampling process forms an observed set by drawing

uniformly at random from the formed matrix. The decoding

process is performed using matrix completion followed by

period de-normalization. The proposed scheme offers a low-

complexity encoder and good tolerance to quantization noise.

The performance of the proposed algorithm, in terms of re-

constructed signal quality and compression ratio, is evaluated

using the MIT-BIH Arrhythmia Database.

II. REVIEW OF MATRIX COMPLETION

Matrix completion refers to the problem of reconstructing

a low-rank matrix M from a small set of observed entries

possibly corrupted by noise.

A full rank matrix of dimensions (n× n) has n2 degrees

of freedom and, therefore, it is not possible to estimate all its

values from a small subset of entries in the matrix. However,

when the matrix has a low rank (r), the degrees of freedom

are r(2n− r), which is much smaller than n2. Then, in the

absence of noise, it is possible to recover a low-rank matrix

by solving the following optimization problem

min rank(X)

s.t. Xij = Mij , for (i, j) ∈ Ω,
(1)

where X ∈ R
m×n is the variable matrix, rank(X) is the rank

of the matrix X and Ω is the set of indices of the sample

entries. However, this optimization problem is NP-hard and

cannot be (expected to be) solved in polynomial time [8].

Motivated by compressed sensing [11], where minimizing

the ℓ1 norm is the tightest convex relaxation to minimizing
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Fig. 1. Block Diagram of the proposed method. (a) Encoder. (b) Decoder.

the ℓ0 norm, the following optimization problem is proposed

min ‖X‖∗

s.t. Xij = Mij , for (i, j) ∈ Ω,
(2)

where ‖X‖∗ stands for the nuclear norm, the sum of the

singular values of X . Adopting compressed sensing ideas,

rank(·) of a matrix corresponds to ℓ0 norm of a vector, and

nuclear norm to ℓ1 norm [8]. The nuclear norm is the best

convex approximation of the rank function over the unit ball

of matrices.

This problem is a special case of the nuclear norm

minimization problem

min ‖X‖∗

s.t. AX = b,
(3)

where A : Rp×q → R
m is a linear map and b ∈ R

m. In the

presence of noise, the constraint A(X) = b must be relaxed,

resulting in either the problem

min ‖X‖∗

s.t. ‖AX − b‖22 ≤ θ,
(4)

or its Lagrangian form

min λ‖X‖∗ +
1

2
‖AX − b‖22 (5)

where θ and λ are algorithmic parameters [10].

III. COMPRESSION SCHEME

In this section, we present the proposed compression

scheme. The block diagram of the proposed approach is

presented in Fig. 1, where Fig. 1(a) depicts the encoder and

Fig. 1(b) the decoder. Implementation details of the encoder

and decoder are described below.

A. Encoder design

1) Period Normalization: The main assumption of the

matrix completion problem is that the matrix to be recovered

has to be low-rank. It is natural to expect that a matrix

whose columns or rows are highly correlated has low rank.

Motivated by this, we introduce a period normalization step

in order to exploit the quasi-periodic nature of the ECG

signal, shown in the high correlation between samples of

adjacent beats.

The peaks of QRS waves should be detected first to iden-

tify each heartbeat. Since each ECG period can have a dif-

ferent duration, we normalize them to the same length, using

cubic spline interpolation. Let x = [x(0) x(1) . . . x(N0−1)]
denote an ECG cycle. The normalized cycle, denoted as

xn = [xn(0) xn(1) . . . xn(Nn−1)], is computed as follows:

xn(m) = x̂(t∗), (6)

where x̂(t∗) is an interpolated version of the samples, and

t∗ = (m ∗N0)/(Nn), (7)

where N0 and Nn are the original and normalized period

lengths, respectively. Once the heartbeats have been normal-

ized, they are organized column-wise in a matrix.

Apart from period normalization, there are alternative

length equalization methods, such as zero-padding, which

pads the short segments with zeros, or periodic-padding,

which pads the short segments with a periodic extension.

The 70% largest singular values of the matrices constructed

by using these three length equalization techniques are

shown in Fig. 2 on a semi-log scale. Although the three

methods offer approximately low-rank representations, the

set of singular values falls off more rapidly in the case of

period normalization. These experiments were carried out

over a single-lead ECG extracted from the record 117 from

the MIT-BIH Arrhythmia Database.

When reconstructing the original signal, the decoder re-

quires the original periods as side information. Therefore,

these periods are added to the header of the compressed file.

2) Sampling and Optimal Quantization: The ECG data

are organized column-wise in a Nn×Q matrix, denoted as X ,

where Q is the number of adjacent heartbeats encoded and

Nn is the normalized length of each heartbeat. To reduce the

dimensionality of the ECG data, we take p samples uniformly

at random of the formed ECG matrix. We denote the sample

vector as

b = A(X) (8)
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Fig. 2. Singular values of the matrix with period normalization (70% of
the largest singular values). (a) Period normalization. (b) Zero-padding. (c)
Periodic extension.

where A represents the random sampling operator from

R
Nn×Q to R

p. Although the length of the QRS complex

is small compared to the length of the entire heart beat, its

recovery in the decoder is important for diagnosis purposes.

Therefore, we force the algorithm to use 30% of the total

number of samples for the QRS sampling. To encode each

sample, we utilize an optimal scalar quantizer designed with

the Lloyd-Max algorithm with Bs bits per sample. Thus,

the total number of bits used by the proposed method is

pBs +QBp, where Bp is the number of bits used to encode

the period of the heartbeats.

B. Decoder design

Although the nuclear norm minimization problem can

be cast as a semidefinite programming problem, it can be

computationally expensive to solve when the matrices are

large. In this paper, we decide to use the algorithm proposed

by Ma et. al in [10], which corresponds to a continuation

(homotopy) technique to accelerate the convergence of the

following fixed point iteration

Y k = Xk − τg(Xk)

Xk+1 = Sτµ(Y
k)

where g(Xk) = A∗(A(Xk) − b), A∗ being the adjoint

operator of A, and Sv(Y ) is a shrinkage operator defined

as

Sv(·) = UDiag(σ)V T ,

where σ = max{σ − v, 0} and UDiag(σ)V T is the singular

value decomposition of Y . The fixed point continuation iter-

ative scheme offers robustness and good recoverability. The

entire algorithm is detailed in [10]. The original heartbeat

periods can be recovered by using the same transformation

as in (6).

IV. EXPERIMENTAL RESULTS

This section describes experiments to evaluate the per-

formance of the proposed scheme. The ECG data used in

the experiments are from the MIT-BIH arrhythmia database,

sampled at 360 Hz with a resolution of 11 bits/sample.

Let x and x̂ be the N -dimensional vectors representing the

original and reconstructed signals, respectively. The quality

of the reconstructed signals is evaluated via the percent root

mean square difference (PRD), defined as PRD = (‖x −
x̂‖/‖x‖) ·100, where the operator ‖·‖ denotes the Euclidean

norm. The compression performance is evaluated by using

the compression ratio (CR), defined as

CR =
11×N

(p×Bs) + (Q×Bp)
,

where N is the length of the input signal, 11 is the number

of bits to encode each sample, Bs are the bits representing

the measurements, p is the number of measurements, Q is

the number of ECG cycles and Bp are the bits representing

each period.

In the first experiment, we compare the performance of

the proposed algorithm with conventional SPIHT [3] for the

records 100, 117 and 119. For each experiment, 30 repeti-

tions are averaged. We use eight bits for the quantization of

the measurements, Bs = 8, and eight bits for the heartbeat

periods, Bp = 8. The dimensions of the resulting ECG

images depend on the number of detected periods and their

average length.

Figure 3 shows the results of the first experiment. An

overall evaluation of the records reveals that if the target CR

is high, the proposed method is preferred since it significantly

outperforms SPIHT, in this case. The heartbeats in the

records 117 and 100 are very regular and, therefore, it is

possible to get a good approximation of the low-rank matrix

after the period normalization step. The algorithm also shows

a good performance in the case of signals with extremely

varying periods, such as the record 119.

The proposed algorithm is also compared to other ECG

coders through their reported performance in the literature.

In Table I, we show PRD comparisons of different coding

algorithms. As the results show, the proposed scheme ex-

hibits better performance than well-known methods, such as

those based on wavelet transforms [12], wavelet packets [2],

[13] or the DCT transform [4]. For high compression ratios,

the introduced method also outperforms algorithms, such as

SPIHT, according to our first experiment. When compared

to JPEG2000 [5], the ECG compression method based on

matrix completion exhibits lower performance in terms of

compression. Conversely, our method offers a less complex

and computationally demanding encoder. The complexity

of the encoder is dominated by the cost of the period

normalization stage, assuming that fast sampling operators

are available. Suppose L represents the cost of the period

normalization for a single heartbeat, then the computational

cost of the encoder is O(QL).
In this work, visual study of error signal is also consid-

ered. The waveforms of record 117 given by the proposed

compression scheme are visually evaluated in Fig. 4. The

reconstructed signal remains close to the original signal and

the error is equally distributed along the horizontal axis. This
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Fig. 3. Comparison of the proposed method with SPIHT. L: Record 117, M: Record 100, R: Record 119.

TABLE I

COMPARISON OF DIFFERENT ECG COMPRESSION ALGORITHMS

Algorithm Record CR PRD

Lu et. al [3] 117 8:1 1.18

Hilton [2] 117 8:1 2.6

Djohan et. al [12] 117 8:1 3.9

Bilgin et. al [5] 117 8:1 0.86

Proposed method 117 8:1 2.18

Bilgin et. al [5] 117 10:1 1.03

Proposed method 117 10:1 2.5

Bradie et. al [13] 100 23.61:1 9.92

Proposed method 100 23.61:1 8.4

Bradie et. al [13] 119 19.65:1 6.15

Proposed method 119 19.65:1 6.01

implies that the proposed method performs well locally and

does not incorporate outliers in the reconstruction.

Like most ECG compression algorithms that operate on 2-

D arrays, the proposed scheme relies on the assumption that

the periods are gathered and organized in a matrix. This will

cause some delay, at least one 2-D array collection time.

It is clear that this behavior compromises strict real-time

data transmission. However, the proposed scheme is useful

in cases when one is only concerned with data storage, or

minor delays are tolerable.

V. CONCLUSION

We applied the matrix completion problem to ECG com-

pression by constructing an approximately low rank matrix

with ECG data. The results indicate that the presented algo-

rithm compares favorably to other methods in the literature.

The proposed scheme offers the low complexity encoder

needed by holters and other ECG acquisition devices. Future

directions for research will include the incorporation of an

entropy coding stage and the design of an adaptive sampling

method that will allow further reductions in the number of

samples.
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