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Low-complexity R-peak detection in ECG signals: A preliminary step
towards ambulatory fetal monitoring
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Abstract— Non-invasive fetal health monitoring during preg-
nancy has become increasingly important. Recent advances
in signal processing technology have enabled fetal monitoring
during pregnancy, using abdominal ECG recordings. Ubiqui-
tous ambulatory monitoring for continuous fetal health mea-
surement is however still unfeasible due to the computational
complexity of noise robust solutions. In this paper an ECG R-
peak detection algorithm for ambulatory R-peak detection is
proposed, as part of a fetal ECG detection algorithm. The pro-
posed algorithm is optimized to reduce computational complex-
ity, while increasing the R-peak detection quality compared to
existing R-peak detection schemes. Validation of the algorithm
is performed on two manually annotated datasets, the MIT/BIH
Arrhythmia database and an in-house abdominal database.
Both R-peak detection quality and computational complexity
are compared to state-of-the-art algorithms as described in the
literature. With a detection error rate of 0.22% and 0.12% on
the MIT/BIH Arrhythmia and in-house databases, respectively,
the quality of the proposed algorithm is comparable to the
best state-of-the-art algorithms, at a reduced computational
complexity.

I. INTRODUCTION

Fetal heart rate (fHR) monitoring and derivation of the
fetal electrocardiogram (fECG) are important means to assess
fetal distress during pregnancy and delivery. Currently used
methods are however not suited for long term observation
throughout pregnancy. The most commonly used methods
for fHR monitoring either use Doppler ultrasound, or a fetal
scalp electrode as part of a cardiotocogram (CTG), which
also includes intrauterine pressure measurements. While al-
lowing for non-invasive measurements, doppler ultrasound
measurements introduce energy into the body and need
continuous attention of a trained physician, making it un-
suitable for long term observation [1]. Furthermore, in many
situations the measurements do not provide conclusive infor-
mation for accurate assessment of fetal health and, therefore,
additional information is needed for clinical decision-making
[2]. FHR monitoring using an invasive scalp electrode, while
giving very accurate ECG readings and an unsmoothed fHR
measurement, needs rupturing of the membrane and can
therefore only be applied during delivery.

Recently published methods enable monitoring of fHR and
fECG non-invasively using abdominal contact electrodes [3],
[4], [5]. However, the signal has a reduced SNR, compared
to the use of a fetal scalp electrode, with the maternal
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electrocardiogram (mECG) as the predominant interference.
The method proposed in [4] removes the mECG to increase
the SNR implementing the following steps: 1) preprocessing,
2) maternal R-peak detection, 3) mECG estimation, and
4) mECG substraction. The resulting signal can be used
for fetal R-peak detection with results comparable to those
obtained using a scalp electrode [4]. Because of the high
quality results compared to other methods, e.g. spatial and
adaptive filtering, template substraction, and ICA, we used
this method as a baseline reference. Continuous monitoring
of the fetus in an ambulatory setting using this method is
however still unfeasible, due to its computational complexity.
In an effort to reduce the complexity and increase the
HR detection quality of [4], we propose an algorithm to
replace the formerly used R-peak detection algorithm in [4],
which was based on [6]. The preprocessing stage of [6]
contains a length transform, composed of consecutive differ-
entiation, absolute value, and integrator stages, to emphasize
the features of the QRS complex. Because of the high-pass
filtering effect of the differentiation, the method described
in [6] is very sensitive to measurement noise and requires
pre-filtering, especially on measurements obtained in an am-
bulatory setting. Therefore, a single FIR filter with a length
of 1 s is used in [4], combining a high-pass (HP), low-pass
(LP), and notch filter at 2 Hz, 100 Hz and 50 Hz, respectively.
The decision stage is based on thresholding, where the height
of the threshold is dependent on the absolute local signal
amplitude of the preprocessed waveform. The proposed R-
peak detection algorithm, which is based on the discrete-
time continuous wavelet transform (DT-CWT), reduces the
overall computational complexity, while increasing the R-
peak detection quality of the maternal ECG. The algorithm
is described in Section II after a short introduction of the DT-
CWT. Section III discusses the abdominal recordings used
for validation as well as details on the methodology of this
comparison. The comparison results are shown in Section IV,
followed by a discussion and conclusion in Section V.

II. R-PEAK DETECTION ALGORITHM

Algorithm design for detection of the QRS interval in an
ECG signal has been a topic of research for the past four
decades, and a large number of algorithms exist of which
an overview is given in [7]. The most promising group of
algorithms is based on the wavelet transform, an approach
which has been widely researched, e.g. in recent studies by
Li [8], Martinez [9] and Romero Legarreta [10], [11]. These
studies show that wavelet based algorithms provide high
detection quality at low computational complexity. The DT-
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CWT has proven to be of particular interest to measurements
obtained in an ambulatory setting, giving an overall superior
performance compared to discrete wavelet transform based
methods [11].

Based on the DT-CWT as described in Section II-A,
a new R-peak detection algorithm was designed using a
Mexican hat wavelet, as proposed in [10]. The algorithm
can be divided in a number of successive steps, grouped in
preprocessing and R-peak detection stages, as shown in the
block-diagram in Fig. 1.

A. Discrete-Time Continuous Wavelet Transform

A wavelet function ¢ [n] can be any localized waveform
which has finite energy and a zero mean [12]. We can then
define the DT-CWT of a signal z [n] with respect to a wavelet
function ¢ [n] as:

Wt = 3 alilo "7
where the ‘translation’ parameter 7 gives the location in time
and the ‘dilation’ parameter s is a scaling factor, changing
the characteristic frequency of the wavelet at location 7.

The DT-CWT has a band-pass filtering effect, which
allows signal components within a finite range of frequen-
cies, characterized by the energy spectrum of the wavelet
function ¢ [n], to pass. In the proposed algorithm, the second
derivative of the Gauss function, also referred to as Mexican
hat function, is used as wavelet function ¢[n|. The Mexican
hat function is defined as:

n=—oo

2
eln] = (1 —n?e 7, (2)
where n is in the range An = [—4, 4] samples. This range
results in minimal computational complexity while retaining
the required accuracy at the edges. The peak frequency of the
wavelet’s band-pass filtering effect depends on the wavelet
scale s and the signal sampling frequency f, as follows:

sf. - [
fp= = 3)
s
where sy is the relative center frequency of a specific
wavelet. For the Mexican hat wavelet sy, = 2—\/3 = 0.225

[12].
B. Preprocessing

The preprocessing stage consists of a DT-CWT of the
ECG signal with the Mexican hat wavelet. To reduce the
computational complexity of the algorithm, only a single
scale s is used in the wavelet analysis. The peak frequency
fp of the wavelet is chosen at 17 Hz, centered in the
10 — 25 Hz frequency band, which contains most of the
QRS energy of the mECG [7]. This reduces the DT-CWT
to a convolution with a single wavelet, which has a support
width Ay = An - sy, /f, = 53 ms.

Subsequently the absolute value of the wavelet analysis
output is taken, resulting in the output signal .S. This allows
for the use of a single threshold in the following R-peak
detection stage, independent of the orientation of the cardiac
vector with respect to the electrode position.

Preprocessing R-peak detection

1. Segment selection | | 2. Threshold determination
Wavel_et o HR limits s Previous threshold
analysis * RRinterval e Max in segment
* Previous segment | | » SNR estimate
B (g )
T | ]
< 4. SNR estimation 3. Peak detection
Absolute o Heigth of R-peak o First peak > threshold
value * Max outside QRS * Select highest peak within
e Log; of ratio 0.28s
Fig. 1. Block-diagram of the proposed R-peak detection algorithm.

C. R-Peak detection

The R-peak detection part of the algorithm consists of four
consecutive stages, which are executed in a iterative process,
as shown in the right part of Fig. 1. These stages are, in
order, 1) segment selection, 2) threshold determination, 3)
peak detection and 4) SNR estimation.

1) Segment selection: To increase the quality of the
subsequent threshold determination, the boundaries of the
signal segment are chosen, based on previously found R-
peak positions, such that the segment is expected to contain
exactly one R-peak. Different from [13], where segment
selection is used to reduce the computational complexity,
this is done to increase the quality of the subsequent R-peak
detection. The minimum and maximum segmentation sizes
are defined by the allowed HR, which the algorithm assumes
to be in the range of 36 - 210 beats per minute.

2) Threshold determination: For each segment a threshold
value T is calculated based on the previous threshold value
Tprevw and a new threshold estimate 7', using the following
auto regressive (AR(1)) process:

T:OL'T\+(1*0¢)'Tprev7 4)

where o = 1/3, which was found experimenially, indicates
the dynamic behavior of the threshold. Here T'= N - S;,44,
where S, is the maximum value in the current prepro-
cessed signal segment and N is the estimated local noise
level as defined in Section II-C.4.

3) Peak detection: Within the selected signal segment, a
peak position candidate p at time ¢ is selected as the first
preprocessed sample crossing the threshold 7'. The search
segment is now reduced to an interval starting at p, defined by
HR1ax, which is 0.28 s for the mECG. Within this interval, a
new sample p+1 is selected as the new pif S [p+ 1] > S [p].

It is possible that no R-peak p is selected in the current
segment. In this case, a new search at the current segment
location is performed up to three times, where with each try,
the end of the search segment is extended and the threshold
value T is reduced by half.

4) SNR estimation: Once an R-peak/lgls been detected, an
estimate of the signal-to-noise ratio (SNR) after preprocess-
ing, around the last R-peak position, is calculated according
to:

SNR = log, (S [p]) —1ogy (Imaa) » o)

where I,,4 1S the maximum in S in the two intervals
P £ [50,250] ms. This is the maximal fixed-length segment

1762



without QRS-complex, taking HR,,.x into account, and
assuming correct detection of p. To reduce computational
complexity in integer based implementations, log, is used in
(5). A noise level N indicative of the local SNR is deduced
by:

Nprev + median {é, (5—§me, 1}

N = (6)

2 b)
where N, is the noise level around the previous R-peak.
The noise level is in the range of N = [%, 1] , where a low
value of N irl@:ates minimal noise level, while N > 5/6
indicates an SNR below 0 dB.

ITII. VALIDATION

Validation of the algorithm was done by comparing the
algorithm results with manually annotated R-peak locations
on two sets of recordings, measured on the chest and
abdomen, respectively. The first set consists of the whole
MIT/BIH Arrhythmia database (MITDB) [14], containing 48
thoraxial measurements of 30 min each, sampled at 360 Hz.
This dataset was used for comparison with state-of-the-art
algorithms as described in literature. The whole MITDB was
used for validation, with the exception of some segments
in record 207, which are annotated to contain ventricular
flutter episodes [13]. The second set consists of an in-house
database (IHDB) with a total length of 9.5 hours, comprising
21 abdominal measurements from women during labor at
various ages of gestation. These data were collected at the
Maxima Medical Centre in Veldhoven (The Netherlands) as
described in [15], after which all maternal R-peaks were
annotated manually. Each measurement in the IHDB was
recorded using the electrode configuration shown in Fig. 2,
with eight channels, each sampled at 1000 Hz. For each file
in both datasets a single lead was selected for algorithm
comparison. For the MITDB lead II was used, while the
first principle component was used in the IHDB.

For both the MITDB and IHDB datasets, a comparison
was made in R-peak detection quality as well as computa-
tional complexity. The detection error rate (D.) is used to
quantify the detection quality of the algorithm and to allow
for a comparison with other algorithms from literature. D,
is defined as:

Fig. 2. Electrode configuration: (a) front view and (b) side view. (Modified
from [15])

FP+FN
¢ TP+FN’
where TP is the number of correctly detected peaks (true
positive), FN is the number of missed peaks (false negative),
and FP is the number of falsely detected peaks (false posi-
tive). In line with previous studies, a peak is considered to be
correctly detected if it is located within a 2100 ms interval
around the annotated peak position [13], [16]. Additionally,
the positive predictivity +P = TP/ (TP + FP) and sen-
sitivity Se = TP/ (TP + FN) are used as comparitive
quality measures.

The average number of multiplications per sample (MPS)
is used as a measure of computational complexity. All op-
erations with a complexity higher than a multiplication (m),
e.g. a division or square root, are represented by multiple
multiplications. Both operations have a complexity in the
order of m - O [n], where n is the accuracy of a value in
number of bits. Assuming an accuracy of 16 bits for both
numerator and denominator, a division and square root are
substituted by 9 and 17 multiplications, respectively [17]. All
simple operations, e.g. addition, substraction or bit-shift, are
left out of consideration.

)

IV. RESULTS

Fig. 3 shows an example of an ECG signal segment as
well as the corresponding output of the preprocessing stage.

Table I shows an overview of recent state-of-the-art R-
peak detection algorithms on both quality and computational
complexity for the MITDB. The quality comparison is based
on the results presented in literature by the various authors,
while the computational complexity for each of the algo-
rithms is estimated based on the algorithm description or
available MATLAB code.

Table II shows a comparison in both quality and compu-
tational complexity between Vullings [4], Romero [11] and
the presented algorithm for the IHDB, all of which are based
on a best effort implementation of each of the algorithms.

ECG z[{]

CWT| St

5 6 7 8 9 10
Time [s]

Fig. 3. Example of an ECG signal segment (top), where ® and V indicate
the maternal and fetal R-peaks respectively, The dotted lines indicate the
detected maternal R-peaks. The horizontal bars in the prepocessing output
(bottom) indicate the threshold level for each of the used segments.
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TABLE I
COMPARISON OF THE PRESENTED R-PEAK DETECTION ALGORITHM
WITH ALGORITHMS FROM LITERATURE ON THE MITDB

Se (%) | +P (%) | De (%) | MPS
Li et al. [8] 4¢ 99.89 99.94 0.17 140
This work 99.90 99.88 0.22 65
Martinez et al. [18] ¢ 99.80 99.86 0.34 110
Romero Legarreta [11] b 99.65 99.79 0.56 103
Vullings et al. [4] 99.62 99.82 0.56 439
Pan-Tompkins [19] “¢ 99.75 99.54 0.71 72
Madeiro et al. [13] ¢ 98.47 98.96 2.56 40

4 Se, +P and D, recomputed due to discrepancy in presented results
b Subset of MITDB used.
¢ Complexity estimates based on description in literature.

TABLE II
COMPARISON OF THE PRESENTED R-PEAK DETECTION ALGORITHM
AND BEST-EFFORT IMPLEMENTATIONS OF [4], [11] ON THE IHDB

Se (%) | +P (%) | De (%) | MPS
This work 99.93 99.95 0.12 135
Romero Legarreta [11] 99,89 99,94 0.16 260
Vullings et al. [4] 99.89 99.83 0.28 1130

V. DISCUSSION

A high-quality computation-efficient R-peak detection al-
gorithm was developed based on the DT-CWT, combining
high quality R-peak detection with a low computational
complexity. The algorithm quality, defined by the detection
error rate D., is quantified by measuring correct and false
heartbeat detections on both thoraxial and abdominal mea-
surements from the MITDB and IHDB, respectively.

Tables I and II show that the presented algorithm has
an R-peak detection quality comparable to or better than
other state-of-the-art algorithms in literature, at a reduced
computational complexity. Compared to the R-peak detection
algorithm in [4] a decrease in D, over 50% and an 85%
reduction in computational complexity on both thoraxial and
abdominal measurement data is obtained. A reduction in
both D, and complexity can also be observed compared to
other recent DT-CWT based R-peak detection algorithms.
The increase in detection quality is due to the use of dynamic
segmentation as well as SNR dependent thresholding. De-
spite these additions, the overall computational complexity
of the algorithm is low because of the application of the DT-
CWT, using a Mexican hat wavelet at a single scale. Only
the algorithm by Li [8] achieves a slightly higher detection
quality than the presented algorithm on the MITDB. How-
ever, because of the use of the discrete wavelet transform
(DWT) with a quadratic-spline wavelet at multiple scales, as
well as significant post processing, the complexity is higher
than that of the presented algorithm. Furthermore, DT-CWT
R-peak detection methods are claimed to be more robust
to noise than the DWT as used by Li, making the proposed
algorithm more suitable for use in an ambulatory setting [11].

We have presented a low-complexity algorithm with high
quality R-peak detection results, which is suitable for con-
tinuous ambulatory monitoring. Although good results have
been shown on both thoraxial and abdominal measurements

for detection of the maternal R-peak, these signals were
recorded while the patient was stationary. In an ambulatory
setting motion artifacts will become more predominant and
significant work is necessary before ambulatory ECG de-
tection is feasible. Our future work will therefore focus on
extending the algorithm for fECG detection while optimizing
it for high detection quality in noisy recordings at a low
complexity. This will in part be achieved by refining the
wavelet analysis method, evaluating other wavelet shapes
including a dynamicly changing wavelet shape. Eventually
the algorithm will be extended to include detection and
analysis of uterine activity using abdominal measurements,
in order to get a better estimate of the fetal health.
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