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Abstract—Falling in the home is one of the major challenges
to independent living among older adults. The associated costs,
coupled with a rapidly growing elderly population, are placing
a burden on healthcare systems worldwide that will swiftly
become unbearable. To facilitate expeditious emergency care, we
have developed an artificially intelligent camera-based system
that automatically detects if a person within the field-of-view has
fallen. The system addresses concerns raised in earlier work and
the requirements of a widely deployable in-home solution. The
presented prototype utilizes a consumer-grade camera modified
with a wide-angle lens. Machine learning techniques applied
to carefully engineered features allow the system to classify
falls at high accuracy while maintaining invariance to lighting,
environment and the presence of multiple moving objects. This
paper describes the system, outlines the algorithms used and
presents empirical validation of its effectiveness.

I. INTRODUCTION

With the aging population in Canada (and around the
world), Canadians are beginning to experience the effects of
an over-extended health care system. One approach to allevi-
ate the healthcare pressures resulting from this demographic
change, is to promote and support aging in place. Aging in
place, is the concept of enabling and empowering older adults
to remain independent and live in their own homes for as long
as they wish. This not only lessens the strain on the healthcare
system, but also improves the quality of life of the elderly.

Unfortunately, without proper considerations, aging in
place may pose health and safety risks, such as those arising
from falls within the home and subsequent complications. In
fact, falls and fall-related injuries are a major cost factor to
the healthcare system in Canada [1]. An older adult who has
suffered a fall may lay on the ground for an extended period
of time, even days, before receiving proper healthcare. This is
a major risk factor, particularly for older adults living alone.
Such delays often result in major, even life-threating, health
complications and could incur significant cost. This paper
focuses on the development of an intelligent vision-based in-
home fall monitoring system for the purpose of providing
prompt response to older adults in case of an emergency.

Personal Emergency Response Systems (PERS) provide
victims of falls or other dangerous events with an outbound
call for help. The standard PERS device is a wearable panic
button which is carried by the person and must be manually
triggered once an emergency situation arises. This device
relies on the following criteria: the person is wearing the
button, is conscious, and is capable of pushing the button after
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the event. However, these criteria are not always met for fall
victims. Our solution automatically monitors the events and
actively detects falls without the need for victims to initiate
a call for help, or to even remember to wear the device.
Computer vision and video analysis techniques are used for
automated fall detection. A complete working prototype has
been designed, implemented, and tested.

II. PREVIOUS WORK

Several vision-based fall detection methods have been
proposed in the past [2]–[6]. These techniques typically use
a small (< 10) set of features (visual cues), usually operate
in controlled environments (e.g. with controlled lighting),
and are unable to function in the presence of multiple
subjects within the scene. These techniques do not yet fully
address the challenges of real life situations in which rooms
have complex lighting (e.g. with external windows, multiple
moving subjects and dynamic environments).

Our previous work demonstrated a single-camera ceiling-
mounted PERS that detected falls in real home environments
[7]. The system maintained an adaptive background model
to extract a silhouette of the active region. This background
model was derived from an single Gaussian and was able
to detect foreground regions and their cast shadows. The
silhouette and shadow region were then processed through a
neural network to distinguish fall versus no-fall events based
on shape and velocity features.

Two in-home trials were conducted in real living rooms, in
which able-bodied residents were asked to occasionally sim-
ulate falls, in order to evaluate the system. Upon improving
the system following the first trial, the system was able to
detect 100% of the simulated falls in the field of view (FOV)
of 48◦ by 61◦. However, numerous false alarms did occur
even with the addition of post processing (5.43 per day).

The real-world tests indicated that complex lighting situ-
ations (such as light from windows) and multiple occupants
generated the majority of the false positives when operating
at five frames per second (fps).

III. CONTRIBUTIONS

This paper presents an improved version of the system
and classifier of our earlier work [7] which accommodates
some of the limitations observed during the in-home trials.
These improvements include: the use of a wide-angle lens
to increase the area of coverage; dealing with the resulting
image distortion and lighting issues by using global features;
enhancing robustness to abrupt lighting changes and lighting
effects such as sunlight through a window; handling more
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Fig. 1. Algorithmic Block Diagram of the System

Fig. 2. Sample Fall Image and Its Processing: a) Input Image; b)
Background Model; c) Foreground Blobs (light) and Shadow Blobs (dark); d)
Foreground Blobs; e) Foreground Blob with Recent Activity; f) Foreground
Masked Out; g) Background Subtraction Result; h) A Foreground Blob
Region’s Optical Flow Magnitude; i) Low Resolution Annotated Fall Blob
Area

than one subject by tracking multiple active silhouette blob
regions; enhancing background modeling to reduce false
active silhouette regions associated with lighting changes by
merging with image optical flow; collecting a large data
set of simulated falls and normal events for training and
testing purposes; and reducing the operating frame rate from
five to two fps for lower data-rates, processing, and power
requirements.

IV. SYSTEM DESIGN

Fig. 1 presents the block diagram of the algorithmic flow
of the system. The algorithms are implemented in C++ and
OpenCV on an Intel I7 processor.

An inexpensive Logitech QuickCam Pro 9000 captured
video for training and testing at two fps at QVGA (320×240)
pixel resolution. The camera was modified by removing
the auto-focus lens and mount, and replacing them with a
M12x0.5 lens mount and a board mount lens with focal
length of 2.2mm.The wide angle lens increased the FOV to
92◦×109◦.

A. Active Region Modeling

Active region silhouettes that were analyzed to determine
the presence of falls were calculated with background sub-
traction and optical flow information. As described in our
previous work, a background model was built by using a

Fig. 3. a) A Sample Video Frame; b) Optical Flow Magnitude

single Gaussian distribution centered at the estimated inten-
sity of each pixel [7]. The model was then used to perform
background subtraction to form silhouette images (active
region blobs) and shadows (fig. 2(g),(d),(c)). The shadow
regions were identified based on the isolation principles
outlined in [8]. In contrast to our other work, in which
only the largest active region blob was considered as the
object of interest, the current system considers all active blob
regions and their shadows. This multi-blob approach creates a
difficulty with respect to the selection of the adaptation rates
for updating the background model.

Many outlier blobs tend to occur from local lighting
changes and objects being moved and should be adapted into
the model. Previously, the largest foreground blob was always
considered to be related to the object of interest and was thus
adapted very slowly into the background model while the
remaining blobs were adapted rapidly to account for lighting
changes.

1) Optical Flow Decay: In order to adapt the background
model for multiple active region blobs, optical flow compu-
tations [9] were incorporated into the background adaptation
approach. A similar method for enhancing background mod-
eling with optical flow has previouly been investigated [10].
Specifically, in this work we used optical flow magnitude
to control background adaptation rates. This optical flow
method rewards objects that are moving periodically with
slow adaptation rates and objects that are non-moving or
slowly moving with fast adaptation rates. (See fig. 2 for
example input and model images processed to form blob
regions and shadows.) The magnitude of dense optical flow
vectors were used to quantify the motion at each blob within
the scene. Fig. 2(e),(h) shows the optical flow magnitude of
a foreground blob region. Fig. 3 depicts an example video
frame for which the optical flow magnitude highlights a
moving person as well as some sparse random noise across
the image.

The underlying assumption here is the motion cues can
rid the system of the stationary object blobs and also blobs
arising from lighting changes. Moved furniture generates
large foreground regions which remain stationary for ex-
tended periods. Similarly, lighting changes typically do not
result in significant optical flow magnitude. Very slow moving
blobs are therefore adapted more quickly into the background.
Large blob regions with significant motion, on the other hand,
are more likely to correspond to humans and are adapted at
much slower rates.

B. Features

There are three types of features chosen for the fall
detector: Silhouette Features, Lighting Features, and Flow
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Features.
1) Silhouette Features: Silhouette blob features similar

to those in our previous work were chosen for the fall
detector [7]. These features include the Hu moments [11]
as well as various blob status features that describe shape
and dynamics. These features are encoded not only for the
scene’s foreground blobs, but also for their corresponding
shadow blob regions. In total there are 32 silhouette features.

2) Lighting Features: The lighting features consist of vari-
ous global difference image pixel statistics which are sensitive
to lighting changes. They are applied on the full image
as well as an inverse blob masked difference image. (See
fig. 2(f) for an example input image with a blob mask applied
over the fallen person.) The statistics are calculated on a
difference image resulting from previous frame subtraction
and also background model subtraction – with and without
the blob mask applied to the images. To enhance the amount
of information obtained by the features, they are calculated
in both the RGB color space and also in a lighting intensity
invariant color space c1c2c3 [12]. Empirical analysis has
shown that these features are a strong indicator of lighting
changes. In total there are 24 lighting features.

3) Flow Features: Optical flow [9] features were gener-
ated using optical flow magnitude image statistics in the same
manner as lighting features. The statistics are calculated for
both the entire optical flow magnitude image and also the blob
region’s optical flow image. (See fig. 2(h) for an example of
blob optical flow.) In total there are six optical flow features.

V. FALL DETECTION

To classify each frame as a fall or no-fall, based on the
silhouette and lighting features, machine learning techniques
were used. A training set that is per-frame annotated with
fall or no-fall information was created. In frames with fallen
persons, their shapes were annotated in 20% resolution.
(See fig. 2(i) for a low resolution annotation example.) The
annotated training data was later processed by the machine
learning algorithm to learn from the annotated examples.
Once the training was complete the resulting model was
tested with the new test input frames to evaluate the system.

A. Data Collection and Annotation

Training and testing data were collected from three office
room settings. Two rooms were only used for training data
while the other room was used for testing data. This training
and testing room separation was performed so that the em-
pirical evaluation was less room-dependent. All three rooms
have one large window occupying about 50 percent of a wall.
These windows allowed for dynamic lighting changes due
to sunlight and cloud movement over the course of a day.
During the data collection period, videos were recorded in
each room at two fps. Over the course of three weeks, able-
bodied participants were asked to perform several simulated
fall postures on the floor in all three rooms.

For analysis, the data set was reduced to 195 fall event
sequences to increase the speed of the training processes:

162 sequences, from two rooms, were used for training;
the remaining 33 sequences, from the third room, were
used for testing. Each sequence was generated by selecting
approximately 7 minutes of frames around the simulated falls.

The video sequences were manually annotated with one
of five states assigned to each frame: before-fall, before-
fall-transition, fall, after-fall-transition, and after-fall. The
transition states are areas of ambiguous labeling when a
person is in the process of falling and is not yet on the
floor. Further annotation (a low resolution mask at 20%
of the native image resolution) of the fall silhouettes was
performed for all fall state frames (fig 2(i)). During the
training process, in cases where multiple active blobs were
tracked, the silhouette mask was used to identify the blob
that corresponded to the fall1.

B. Classifier Training

Fall detection was formulated as a per-frame binary clas-
sification task. That is, a binary classifier was trained to
discriminate frames which were labeled as containing a fall
from those which were a no-fall. Only the frames from the
beginning of a fall sequence up to the before-fall-transition,
and the first 12 fall frames were considered. If more fall
frames were considered, slower adaptation rates would be
necessary to prevent the silhouette from disappearing. How-
ever, a slow adaptation rate would result in the system not
adapting quickly to moved furniture or lighting changes.
Also, the transition frames were not included as they could
not be reasonably labeled as fall or no-fall for training.

Three training approaches were taken to investigate which
approach would better model the data. The data set was
separated into two catagories, training and testing, based
on rooms. This separation of rooms enabled us to better
detect if the classifier works for new rooms. Classification
performance was compared using three different machine
learning classifiers, which vary in regularisation and the
complexity of the decision boundary on the features: logistic
regression, neural networks, and support vector machines
[13].

VI. RESULTS

After training the classifier to detect the presence of a fall
(per-frame), the classifier was used to classify the training
and test data to determine system performance. The results
in fig. 4(a) (train data) and 4(b) (test data) show the ROC
curve for the classifier with various combinations of features
used for training: L- indicates lighting features; S- indicates
silhouette features; BG indicates image subtraction with the
background model; Pre indicates image subtraction with the
previous frame; Hu indicates the Hu moment features; and
Status indicates the shape and dynamics features.

From these figures, it can be observed that the different
features classify the training and testing data with various
levels of success. The L-BG-Model, L-Pre-Model (Lighting

1The data set is planned to be freely available for research purposes.
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(a) Train Data: Feature Results
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(b) Test Data: Feature Results
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(c) Test Data: LogReg, NN, and SVM Compared

Fig. 4. Machine Learning ROC Curves

Features applied to both the previous frame difference and
background model difference) appear to provide consistent,
relatively high performance on both data sets. In contrast,
the Flow (optical flow magnitude), with only six individual
features, appears to have only minor success in classifying the
fall data. The overall performance on the test data from the
single room was slightly better than the results on the training
data from the other two rooms. The improved performance
was attributed to the patterns in the occupent traffic (more
walking through, less sitting) and to having fewer frames
with partially visible falls.

Further tests were conducted with additional machine
learning techniques to evaluate performance on the data set
with all features considered. The techniques chosen were
logistic regression, neural networks, and support vector ma-
chines. The results of the three techniques are depicted in
fig. 4(c). A Multilayer Perceptron Neural Network achieved
the best overall fall detection performance. Using validation
data to select an operating point on the Neural Network ROC
curve resulted in a true positive rate of 92% and false positive
rate of 5% on the test set.

The test data set results from the neural network (33 fall
sequences) had 115 false positive fall event frames. Visual
inspection of these false positive frames indicated that all
false positives occurred with persons in the field of view.
Further fall classification was performed on 559 additional
non-fall sequences in which no falls frames occurred. These
additional sequences contained both empty and occupied
rooms. The sequences were classified and the results showed
that very few empty room false positive falls occurred. Thus,
the improved classifier operating with a wide angle lens
demonstrated substantial robustness to lighting change events.

VII. CONCLUSIONS AND FUTURE WORK

We have designed and implemented a vision-based per-
sonal emergency response system, which is able to handle
multiple active regions, has a wide field of view that can
capture a single large room, and is able to operate effectively
under moderate lighting changes. A simulated fall data set
was collected from three rooms with large external windows
and this data set was partitioned into training and testing
data for machine learning. Results indicate that the system

was able to handle multiple active regions in the scene while
maintaining robustness to lighting changes.

For future work, we will: perform post-processing on
the per-frame classifications; expand on the global lighting
features; further decrease the fps; extend the data set; and
perform in-home tests in large scale deployment.
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