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Abstract—Distributed ambient and on-body sensor systems can
provide a suitable basis for recognizing complex human activities
in daily life. Moreover, distributed activity recognition systems
have high prospects for handling processing and communication
loads more effectively than centralized solutions. A key challenge
is to construct distributed activity recognition systems that make
efficient use of the resources available for the recognition task,
considering scalability and dynamic system reconfiguration.

In this work, we present an approach to distributed activ-
ity recognition by introducing an activity-event-detector (AED)
concept. We show formally how to construct and use AED for
distributed recognition systems based on directed acyclic graphs.
We illustrate essential properties for system scalability and
efficiency using AED graphs. Results from a home monitoring
study targeted at monitoring daily life activities are presented
to illustrate the AED-based model regarding applicability and
reconfiguration.

I. INTRODUCTION

Monitoring activities and user context using ubiquitous

systems is often considered to be a base functionality, which

can enable advanced service for novel assistive tools in smart

environments. Famous examples of approaches to create such

aware environments include the the Place Lab [1] and others,

targeted at investigating activity monitoring solutions [2].

A distributed, parallel monitoring using several sensors can

provide fine-grained information on the user’s activity in these

settings.

Generally, extracting activity and contextual information

in smart environments essentially benefits from distributed

monitoring and information fusion using ambient and worn

sensors. These sensors are often battery-powered and thus,

minimizing their energy consumption is vital to ensure ac-

ceptable system lifetime. As opposed to sending continuous

data streams, energy can often be saved when performing local

processing and only communicating event-type information on

recognized activities when needed [3], [4]. Besides energy

saving, reduced communication bandwidth moreover eases

joint use of one wireless frequency band. However, due to

the potential diversity of human activities and the number

of available objects, a distributed recognition system can

imply complex information flows and large number of nodes.

Nevertheless, particular sensing and activity detection nodes

may not be required or available at all times. Consequently,

effective energy saving should incorporate knowledge on the

actual need for a detector node to be present and when it is

safe to turn off.
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Similarly, nodes may not be able to distinguish certain

activities as they occur in real life, while the entire system

may well identify them using the distributed approach. As

an example, assume that a cooking pot is being used and

that the pot could detect movement events, such as being

picked up and placed down. While this pot could register

these events by measuring and recognizing patterns of an

attached inertial sensor, the pot’s information does not reveal

whether it is being cleaned or used for cooking. The latter

would provide essential structural information regarding the

performed activity sequences. Fusion and sequence matching

among events reported from multiple distributed detectors can

be used to discriminate more complex activity sequences,

referred to as activity composites [4]. Our previous works

showed that indeed performance and energy efficiency can

be gained in a distributed settings, by operating sensor nodes

selectively [3]. Nevertheless, it remains challenging to describe

relations between activities, events derived from them, and

distributed detector nodes.

In this present work, we introduce a graph-based modelling

approach for describing activity-event-detector (AED) struc-

tures in distributed activity recognition systems. Our approach

is based on directed acyclic graphs, which lend themselves

well to denote dependencies between activities that can be

observed, events that can be detected, and physical detector

nodes used to report these events. Among others, AED graphs

allow us to denote benefits of reconfiguration in a distributed

system, as we demonstrate in this work. In summary, the

following contributions are made:

1) We introduce the formalism to derive AED-graphs and

detail specific constrains in the graph topology. With

AED-graphs, we show how reconfiguration situations

can be handled.

2) We present an evaluation of the AED-graph approach

in modelling observational data from a home activity

monitoring study. The evaluation targeted daily activities

in a home kitchen environment.

A. Activity-event-detector (AED) concept

Activities are often captured in a hierarchical recognition

stack to manage activity and behavior complexity. At its lowest

layer, a stack would process raw sensor data to identify atomic

activities, which are considered basic, non-dividable activity

units in the considered recognition stack. Examples include

“picking up a book” and “maneuvering a pot”. Higher layers

may subsequently be used to agglomerate atomic activities into

more complex activity sequences (composites), representing

workflow expressions. It is important to note that representing
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Fig. 1. Concept of the activity-event-detector (AED) distributed activity
recognition approach. Each detector in a distributed recognition system
performs local data acquisition, atomic activity spotting, and communicates
event-type information to other network nodes.

and recognizing atomic activities deviates fundamentally from

algorithms used to recognize activity at higher layers.

The AED recognition approach is shown in Figure 1 for an

example of three distributed detectors. In the AED concept, a

set of distributed sensing and detection nodes (for simplicity

in this paper we refer to detectors) are considered, composed

of the following functionalities:

• Sensing of atomic activities. Each detector performs

sensing of one or more modalities to capture contextual

data related to non-dividable units of user activity. The

particular set of atomic activities is not constrained. Often

one atomic activity is observed by more than one detector

and one or more sensor modalities.

• Spotting of events. A detector searches and identifies

pattern events in acquired sensor data, corresponding to

the atomic activities. Several atomic activities may map

to one event, eventually reported by a detector. As an

example of this function, consider the cooking pot case

described above. The AED concept does not require

particular pattern properties to denote events, and work

equally for simple state changes and temporal patterns in

sensor data.

• Communication of event information. Once events are

spotted by a detector, communication to other nodes in

the distributed system is initiated for further processing.

The AED concept does not impose constraints on the

network topology, i.e. whether a centralized or distributed

system is considered.

In the AED concept, detected events are communicated

among the distributed detector nodes such that they can be

further processed, e.g. in a event fusion scheme [4]. However,

the AED concept does not constrain system topology to

centralized or distributed schemes. In this present work, we

focus on the modelling of AEDs regarding the mappings

between atomic activities, events, and detectors.

II. RELATED WORKS

Various hierarchical abstraction techniques have been con-

sidered to capture complex human activities. These approaches

differ in granularity of abstractions and recognition goals. For

example, Kawanaka et al. [5] used a hierarchy of interacting

hidden Markov models to represent sequences of activities.

Reconfiguration of sensor networks was not specifically ad-

dressed in these works. Moreover, these works did not consider

the distribution problem, where mapping of activities and

events for effective recognition and efficient communication

are essential.

This present work relates to the hierarchy abstraction ap-

proaches, as further abstractions can be added on top of the

events described here. Several relevant event fusion techniques

had been investigated in our previous work [4].

Using location information as a results’ filter allows design-

ers to address the complexity problem in distributed activity

recognition. Naya et al. [6] used an infrared location estimation

system to mask location-dependent activities. Osmani et al. [7]

use a concept where sensor nodes join a zone if they can

contribute with events to the inference engine executed for this

zone. Temporal relations between subsequent activities can be

used as well to rule out impossible sequences of activities, as

shown e.g. in [8].

At the network level, redundancy between sensor nodes was

exploited to turn off unneeded sensor nodes. Ghasemzadeh et

al. [9] provided bounds for selecting the smallest number of

sensor nodes while maintaining service quality.

III. AED-GRAPH BASED MODELLING

In this section we describe the AED concept and graph-

based modelling approach.

A. AED architecture formalism

The catalog of atomic activities A is represented by ak ∈ A
set members, where ax∩ay = ∅, ∀ x 6= y and 1 ≤ x, y ≤ |A|.
For distributed detectors, atomic activities may yield different

signal patterns. Conversely, for a particular detector, several

atomic activities may need to be represented by one event, if

their signal patterns are similar. As an example, consider the

cooking pot situation for discerning usage from cleaning, as

described in Sec. I. While the pot could distinguish between

atomic activities for being picking up and being placed down,

the object itself could not make out whether it is used for cook-

ing. A synchronous complementary information, e.g. regarding

stove usage could disambiguate the situation. Consequently, in

a distributed architecture the atomic activities of this example

could be discerned, although not from individual detectors as

the pot.

To represent these relations, we map atomic activities to

events of detectors di ∈ D. All detectors in a system deliver

events ei,k ∈ E , which can be interpreted as local observations

of a performed atomic activity k. It is important to note that

ex,k ∩ ey,k = ∅∀ x 6= y where x, y ∈ N . For simplicity in this

paper, we enumerate all events and refer to ej if the relations

to a particular detector is implicit. The set of all disjunct events
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processed by detector i forms the set Ei and that of all events

in an AED system is consequently denoted by E .

B. AED digraphs

In the AED scheme, each event ej represents a set of one or

more atomic activities ak that are locally observed and have

similar signal patterns. This relationship can be represented by

directed biparate graphs, such that A 7→ E . In other words, E
dominates A, while no edges point to activities, thus (E ,A) =
∅. Similarly, the relations between events and detectors can be

modelled using the biparate digraph approach, where E 7→ D
and (D, E) = ∅. Neither graphs (AE, ED) may have cycles

or loops.

Corresponding to the strict directedness, the in- and out-

neighbors of any detector di are:

N−{di} = Ei, Ei ⊆ E , ∀i ∈ N (1)

N+{di} = ∅, ∀i ∈ N . (2)

Similarly, the directedness implies for events ej :

N−{ej} = Ax, Ax ⊆ A, ∀x ∈ N (3)

N+{ej} = {dy}, ∀x ∈ N . (4)

Using the notions of in- and out-degree (denoted by Ω−(·)
and Ω+(·) respectively), the graph reveals the number of edges

linking events with atomic activities and detectors. The degrees

allow us to estimate the recognition complexity of the model,

as the degree correspond to the number of atomic activities

pooled in an event and the number of events pooled in a

detector. The following basic constraints of an AED digraph

can be described using the degree notation:

Ω−{ak} = 0, Ω+{ak} ≥ 1, ∀k ≥ 1 (5)

Ω−{ej} ≥ 1, Ω+{ej} = 1, ∀j ≥ 1 (6)

Ω−{di} ≥ 1, Ω+{di} = 0, ∀i ≥ 1. (7)

Furthermore, the graph notation allows us to describe

subgraphs. We assume that the complete distributed activity

recognition system can be denoted by (G,L(G)) where G

represents all vertices of the system and L(G) all edges

corresponding to:

L(G) =
⋃

k

ak +
⋃

j

ej +
⋃

i

di (8)

A subgraph is defined as having all end-vertices in a region

H ⊆ G, thus:

L(H) ⊆ L(G). (9)

Using the subgraph feature, we can formulate the principles

of reconfiguration as described below.

C. Practical properties of AED digraphs

In the following, we consider an example to illustrate the

AED digraph properties. Table I lists a potential set of atomic

activities for the example activity sequence “heating water”.

As the list shows, several atomic activities involve multiple

objects that may hold detectors with contact switches (for

cupboard doors and stove manipulation), and detectors with

inertial sensors (e.g., to spot picking up, maneuvering, and

placing the pot).

TABLE I
EXAMPLE ACTIVITY SEQUENCE “HEATING WATER” DESCRIBED USING

THE AED SCHEME. DETECTORS COULD INCLUDE CONTACT SWITCHES

AND INERTIAL SENSORS TO REALIZE THE RECOGNITION STEP.

A Description Detectors (event-detector edges)

a1 Take out pot from cupboard (im-

plies cupboard door manipulation).

Cupboard (e1, d1), pot (e2, d2)

a2 Pour water into pot. Pot (e3, d2), water tap (e5, d3)

a3 Place pot on stove. Pot (e4, d2), stove (e6, d4)

a4 Turn on stove. Stove (e7, d4)

Fig. 2. Example AED digraph for the activity sequence “heating water”.
Elements ak correspond to atomic activities, ej to events recognized, and di

to detectors embedded in objects or infrastructure. See Tab. I and main text
for details.

Fig. 3. Illustration of key properties of AED digraphs for the example
activity sequence “heating water”. The edges marked with

⊙
refer to special

conditions: (1) marks an impossible edge, (2) marks a feasible edge that could
provide additional information. See main text for details.

Figure 2 shows the full AED digraph for atomic activities,

events, and detectors corresponding to the activity sequence

and edges listed in Tab. I. Following the notations described

above, we can derive in-degrees of the system for detectors

assuming equal edge weights, µ(·) = 1:

Ω−{d1} = µ(e1, d1) = 1 (10)

Ω−{d2} = µ(e2, d2) + µ(e3, d2) + µ(e4, d2) = 3(11)

Ω−{d3} = µ(e5, d3) = 1 (12)

Ω−{d4} = µ(e6, d4) + µ(e7, d4) = 2. (13)
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Two key properties can be identified from the AED architec-

ture and digraph: firstly, an additional constraint of the AED

scheme is that an atomic activity, e.g. a1 in Figure 3 may

not be linked to element e3 since an edge (a1, e2) already

exists and both, e2 and e3 are connected to d2. Practically, this

means that the signal patterns represented by e2 (picking the

pot) and e3 (handling the pot) are expected to be sufficiently

different, such that they represent different event information

for d2 (detector attached to the pot).

Nevertheless, the atomic activity a4 may well link to e3 in

addition to the edge (a4, e7), as e3 contributes to d2. In this

situation, e3 should expect a sufficiently similar sensor signal

for a4, as for a2.

D. Modelling of reconfigurations

In distributed activity recognition systems, it is often helpful

to reconfigure the system to a current situation. This adapta-

tion could include duty-cycling sensors or changing detector

pattern models depending on the recognition needs.

In the example described above, only a subset of atomic

activities ALoc ⊆ A are applicable if the location within the

kitchen is known. Figure 4 shows an example for activities

related to the location “stove”. Note that the events have been

reordered compared to Figs. 2 and 3. In this illustration, a

subgraph H becomes apparent. The detector in-degrees of H

are reduced to Ω−{d2} = 1 and Ω−{d4} = 2. Clearly, d1 and

d3 are not required for activity recognition in this situation.

Thus, given that appropriate location triggers are available, the

AED graph can be substantially reduced.

Fig. 4. Illustration of the AED digraph reconfiguration for the activity
sequence “heating water”. A reconfiguration for the location “stove” is shown.
Note that the events have been reordered compared to Figs. 2 and 3.

IV. APPLICATION EVALUATION

We applied the AED graph-based modelling in a distributed

activity recognition scenario for food preparation in a kitchen.

The analyzes results presented below are based on an earlier

study [3], from which we selected the kitchen setting.

The activities performed in the kitchen involved the fol-

lowing instructions: heating water, adding soup, cook soup,

slice bread, use computer, prepare table, eat, clean up dishes.

In total, the set amounted to |A| = 44 atomic activities that

were recored from detectors with inertial sensors attached to

right and left wrists of the user, scissors, knife, and stirring

spoon. PIR and light sensor modalities were used to capture

location and object-related activity, including dishes, utensils,

pots, food cupboards and drawers. From the computer, mouse

and keyboard usage was registered. In total, |D| = 11 detectors

was considered.

Objects used in this evaluation typically provided 1 to

3 events, such as picking up, using, and placing down an

object, hence Ω−

Tools{·} ≤ 3. In contrast, Ω−

Body{·} for wrists

was larger, as the user was involved in all activities. When

considering a location-specific reconfiguration, e.g. for the

location stove, ALoc was ∼10% of its initial size. In this

setting, the activities were constrained to heating water, adding

soup, cook soup.

V. CONCLUSIONS

This work showed that AED graphs can be used to model

distributed activity recognition systems. Our work specifically

focused on the mapping of atomic activities, events, and

detectors. The AED approach considers a tight coupling of

sensing and information compression using activity pattern

spotting. AED graphs can be considered independent from the

underlying sensing, recognition, and communication functions,

and aims at providing scalable descriptions in distributed

systems.
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