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Abstract— Most existing human activity classification systems
require a large training dataset to construct statistical models
for each activity of interest. This may be impractical in many
cases. In this paper, we proposed a semi-supervised HMM based
activity monitoring system, that adapts the HMM for a specific
subject from a general model in order to alleviate the require-
ment of a large training data set. In addition, using two triaxial
accelerometers, our system not only identifies simple events
such as sitting, standing and walking, but also recognizes the
behavior or a more complex activity by temporally linking the
events together. Experimental results demonstrate the feasibility
of our proposed system.

I. INTRODUCTION

The continuing objective of wireless body sensor net-
works is to create a non-intrusive reliable instrument for
the collection of (inertial and physiological) data streams
from clinically relevant positions on the body. The collected
data could be analyzed for a number of end applications
ranging from clinical studies (activity monitoring [1], disease
progression, drug reaction etc) to entertainment and lifestyle
applications(athletic training, robotics). Recent advances in
wearable sensing technologies enable us to collect longitudi-
nal data from real subjects performing their normal activities
without interfering with their daily routines. Automatic cap-
ture and analysis of human daily activities has been an active
research area due to a number of potential applications. In
particular, such activity monitoring system can assist in care
giving for elderly group’s daily lives, help to identify and
track their regular performance of daily activities and find
any abnormal behavior pattern due to disease, environmental
effects and seasonal change. For example, the activity pattern
in the long-term data is very useful for a study of a mental/-
physical disorder due to seasonal change known as “seasonal
affective disorder”. Also it can be used in clinical studies for
prediction, diagnosis, and treatment of several diseases and
disorders, such as: Parkinson’s disease [2], multiple sclerosis
[3], severe fatigue or pain, sleep disorders [4], and stroke [5].

Design of such systems has been considered in the past
(e.g. [6]–[8]). Most systems tend to identify simple short
duration events, such as walking, sitting, running, standing
and climbing stairs. Few systems aim to recognize complex
human activities such as working in the office, shopping and
dining, which are longer in duration. The main challenge is
to find realistic yet adaptable statistical models for complex
human activities. Our goal is to identify both simple events

and complex activities. We decompose a complex activity
into a sequence of simple events. The structure of data flow
is shown in Fig. 1.

In a preliminary work presented in [9], a rule based hier-
archical classification strategy has been proposed to classify
human activities without training data. Empirically derived
rules based on the inputs of extracted features and temporal
patterns of event sequence (formulated as a Markov chain)
are used to identify simple events and complex activities,
respectively. However, it is difficult to develop a general
rule across subjects and for different events independent of
activities. For example, someone’s sitting posture when he
works in office could be different from his sitting posture
when he watches TV. This implies that the same event in
the context of different activities could vary from person to
person. Thus, in this paper, we extend our work in [9] and
propose an approach that is more data-driven.

One of the most popular approaches for activity classi-
fication is to use HMM. Specifically, two approaches can
be found in the literature. In [8], [10], the authors define
events/activities such as walking, sitting and climbing stairs,
as states, which compose a Markov chain to represent the
observation data. Viterbi decoding algorithm is then used
to estimate the state sequence (event/activity sequence) to
exploit the temporal dependency among the events/activities.
A second approach as adopted by [7], [11], [12] is to
model each event/activity as an HMM, and then calculate
the likelihood of each model to classify events/activities.
As a Markov model needs to be trained for each activity,
the computational cost increases. Motivated by the fact that
a complex activity can be decomposed into a sequence
of simple events and by the fact that such simple events
(primitive motor movements) are detectable via wearable
sensors, our approach is to combine the two approaches
together. A complex activity is modeled by a Markov model
and the short-term events are modeled as the states in each
Markov model. The system outputs both the short-term
simple events and the long-term complex activities.

In addition, good HMMs require a large training dataset,
which makes it inconvenient in practical application. In order
to overcome this, we propose the use of Bayesian adaptation
techniques, which adapt a universal model to produce the
model for specific subject in an unsupervised manner. Two
adaptation algorithms are employed for such purpose. This
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framework can thus be considered as a semi-supervised
learning technique.

The details of this system is presented in Section 2. Section
3 describes the experimental results that demonstrate the
classification accuracy of our proposed approach. Finally, a
concluding remark is given in Section 4.

Fig. 1. Data flow sequence

II. SYSTEM DESCRIPTION

A. Data acquisition

To recognize the activity of a person’s daily life, two
Freescale triaxial accelerometers are required, with one at-
tached to the waist, and the other one attached to the left
thigh. As we want to recognize the posture of the subject,
we positioned the accelerometer such that Y axis of the
accelerometer is aligned with the head and the Z axis is
perpendicular to the torso and leg. Also the Y axes of
the accelerometers are aligned to the gravity line when the
subject stands upright. To avoid the artifact due to motion of
accelerometers relative to the body, accelerometers are fixed
by iPod bands and then are firmly attached to the body. The
sampling rate of the accelerometer is 30HZ.

B. Feature extraction

Feature extraction is an important step to reduce the
dimensionality of the data space as the raw acceleration data
sequence is too large to be processed by the classifier. Physi-
cal activity is a complex phenomenon generally characterized
by its intensity, duration, frequency, environment and the
type of activity (rest, walk, run, etc.) [13]. Features selected
should be able to represent relevant kinetic information from
acceleration data and characterize different motion patterns.
Thus, what type of features to be selected highly depends on
the type of events/activities to recognize.

Different types of features calculated in time domain,
frequency domain and wavelet domain, such as mean, energy,
entropy, standard deviation, wavelet coefficients calculated
from a small window have been investigated in the literature.
However, postural features are important but often ignored
by the community. As the three activities we are considering
are mostly composed by different postures (sitting, standing,
lying), we use two features from each sensor to represent
the data. The first feature metric is a binary variable, with 1
indicating moving status and 0 indicating static status. It is
equal to 1 when the standard deviation of acceleration data

within a moving window is greater than a threshold and equal
to 0 when the standard deviation is less than a threshold. The
threshold is determined based on our experiments and is set
to 0.3𝑔 in our current system. Note that the threshold could
be adjusted or learned by supervised learning for different
subject groups. The second feature is the inclination angle
of the Y axis of the sensor, which indicates the orientation
of the torso and leg. This feature can be used to distinguish
three main postural conditions, standing, sitting, and lying.

C. HMM modeling

The HMM based classifier has been widely applied to
recognize different human activities. Most HMM based algo-
rithms model each activity using a HMM and experimentally
or arbitrarily choose the number of hidden states without
attaching physical significance to the states. Our work is also
based on Markov modeling and each feature is modeled as a
Gaussian mixture model, albeit with the key difference. We
define each state as one simple event and it is achieved by
interpreting Gaussian mixture model for each state. Fig. 2
illustrates how the Markov model is used to represent the
complex activity. Assume that a Markov model is denoted
by 𝜆 = (𝐴,𝐵, 𝜋), where 𝐴 denotes the state transition
probability distribution, 𝐵 denotes the observation symbol
probability distribution in each state, and 𝜋 denotes the initial
state distribution. Given the values of these probability dis-
tributions, a HMM is built for a given observation sequence.
A typical training process of a HMM is to adjust the model
parameters such that a posteriori probability distribution of
observation sequence given the model 𝜆 is maximized. And
this training process includes two steps:

1) Initialize the model distribution (𝐴,𝐵, 𝜋)
2) Use the Baum-Welch method [14] to estimate the

model parameters

To initialize the observation probability distribution in
each state, we first performed the clustering analysis to find
the initial model parameters. And then a rule based algorithm
is applied to interpret the state by attaching an event to
the mean value of the features of the state. For example,
at the working scenario, the clustering analysis returns two
clusters corresponding to the sitting event and walking event,
respectively.

Fig. 2. Markov chain of events

After the HMMs are built for all the activities, we calculate
the model likelihood values for all possible models using
Viterbi algorithm, and select the activity whose likelihood is
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highest. At the same time, the corresponding state sequence
generated by the selected model will be outputted. The
structure of such system is shown in Fig. 3.

Fig. 3. System structure

D. Bayesian adaptation algorithms

In practice, it is often not convenient to collect a large
amount of training data for each activity. Thus, it is necessary
to build a universal model that allows user to directly use
the model and recognize the activity without training data.
On the other hand, due to the the large variety of motion
patterns for different subjects, a single universal model does
not generalize well to individual motion pattern. For these
reasons, we used Bayesian adaptation algorithms [15] to
adapt a universal model to a specific subject.

The universal model is typically trained using a large
training database involving different subjects. In the Bayesian
adaptation approach, prior knowledge of the distribution of
HMM parameters from the universal model is incorporated
into the modeling process and adapted to the data from
specific subject. Even if some areas of the feature space are
less represented in the training data, the prior information
about the parameters can help to overcome the problem [15].
Two adaptation algorithms are employed here depending on
whether the training data is available or not. We denote
the model parameters in the universal HMM as 𝑤𝑢𝑛𝑖𝑣 and
the model parameters after adaptation as 𝑤𝑎𝑑𝑎𝑝𝑡. In our
experiment, we use the Gaussian mixture model to represent
the probability of observations conditioned on each state.
Thus, the model parameters to be adapted are the mean value,
standard deviation and the weight of each component in the
model.

The first adaptation algorithm requires some training data
and consists two steps in adaptation. First, the model pa-
rameters of the new training data are calculated, denoted as
𝑤𝑛𝑒𝑤. Then, the new model parameters are adapted using
𝑤𝑎𝑑𝑎𝑝𝑡 = 𝛼 ∗ 𝑤𝑢𝑛𝑖𝑣 + (1− 𝛼) ∗ 𝑤𝑛𝑒𝑤 [15], where 𝛼 is the
scale weighting factor that controls the balance between the
universal model and new estimates. The smaller the value of
𝛼, the more contribution the new training data gives to the
adapted model.

The second adaptation algorithm does not require any
training data with the cost of possible higher classification
error. When the new data is received, the built HMM is
applied to estimate the class. And at the same time, the
model parameters corresponding to this class are updated.
This algorithm assumes that the classification result of the
first step is accurate, and therefore, it could lead to higher
classification error when the new data has very different
motion pattern.

III. EXPERIMENTAL RESULTS

In our experiments, we designed three activities, working
in office, sleeping and walking around. For the activity of
working in office, the subject sits in front of desk most
of time, and stands up and then walks sometimes. For the
activity of sleeping, the subject keeps lying posture most
of time. For the walking around activity, the subject spends
most of the time walking. In total, six subjects aging from
22 to 30 involving both females and males participated this
study. Each subject was asked to perform the three activities
with each for 20 minutes. In the experiment, we have
used 5-second window for feature extraction and estimation
of simple event, and 80-second window for estimation of
complex activity. The Leave-One-Out technique is used to
evaluate the performance. Four tests are performed:

1) For each subject, use 10-minute data to train the model
and then the remaining data to test the model.

2) For each subject, three universal HMMs corresponding
to three activities using 5-minute data from the other
five subjects are trained. Then, 5-minute data from
this subject is used to adapt the universal model to
a personal model and the remaining data is used for
testing. This test uses the first adaptation algorithm. In
this case, the weighting factor 𝛼 is given 0.5.

3) For each subject, three universal HMMs corresponding
to three activities using 5-minute data from the other
five subjects are trained. Then, 5-minute data from this
subject is classified and used to adapt the universal
model to a personal model. The remaining data is
used for testing. This test uses the second adaptation
algorithm. In this case, the weighting factor 𝛼 is given
0.5.

4) For each subject, three universal HMMs corresponding
to three activities using 5-minute data from the other
five subjects are trained. Then, the universal models
are used to test the subject’s data for testing.

The results of four tests are displayed in Table 1-4. Test
1 does not employ the universal model and only relies on
the person’s training data to build a model. Test 2 and 3
employ the universal model and combine it with a small
personal training data set to build an adapted model. Test
4 uses the universal model to directly classify the person’s
activities without generating an adapted model. From the data
we collected from six subjects, Subject 2’s motion pattern is
not consistent, and therefore, when his training data size is
not large enough, the classification performance is very bad,
as we observed from Table 1. Comparing Table 2 and 3 with
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Table 1, it is observed that incorporating the universal model
to generate the adapted model improves the classification
accuracy. In Table 4, the classification accuracy of Subject 2
is higher than that of the other three tests, which implies that
the universal model is robust and characterizes good activity
patterns as it is built from a larger training data set. However,
without adapting the universal model to personal data, the
classification performance from Subject 4 and Subject 6
degrades in Table 4, which implies that Subject 4 and Subject
6 have more personal motion pattern and therefore, the use
of adapted model improves the classification performance.

TABLE I

CLASSIFICATION ACCURACY OF TEST 1 (%)

Walking Around Sleeping Working
Subject 1 100 100 100
Subject 2 25 75 25
Subject 3 100 100 100
Subject 4 100 100 100
Subject 5 100 100 100
Subject 6 100 100 100

TABLE II

CLASSIFICATION ACCURACY OF TEST 2 (%)

Walking Around Sleeping Working
Subject 1 100 100 100
Subject 2 50 75 37.5
Subject 3 100 100 100
Subject 4 100 100 100
Subject 5 100 100 100
Subject 6 100 100 100

TABLE III

CLASSIFICATION ACCURACY OF TEST 3 (%)

Walking Around Sleeping Working
Subject 1 100 100 100
Subject 2 0 100 75
Subject 3 100 100 100
Subject 4 100 100 100
Subject 5 100 100 100
Subject 6 100 100 100

TABLE IV

CLASSIFICATION ACCURACY OF TEST 4 (%)

Walking Around Sleeping Working
Subject 1 100 100 100
Subject 2 0 100 100
Subject 3 100 100 100
Subject 4 100 100 90
Subject 5 100 100 100
Subject 6 100 100 73

IV. CONCLUSION

In this paper a framework of HMM based real-time activity
classification strategy is proposed. By defining the level of

activity as a Markov chain of different events, our system
uses a semi-supervised HMM based classification process to
recognize different level of activity. The output of the system
provides both the event status of the subject and level of
the activity, providing valuable insight towards the subject’s
health condition and enabling us to find some interesting
and useful behavior patterns in the long term data. Some
experimental results demonstrate that our system can achieve
good classification performance of daily activities without a
large training data.

REFERENCES

[1] C.-F. Juang and C.-M. Chang, “Human body posture classification by
a neural fuzzy network and home care system application,” Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transac-
tions on, vol. 37, no. 6, pp. 984 –994, Nov. 2007.

[2] M. Mancini, C. Zampieri, F. Horak, and L. Chiari, “Accelerometry-
based longitudinal biomarkers of stance posture in early parkinson’s
disease,” Gait and Posture, vol. 29, no. 1, p. e25, 2009.

[3] K. Zabjek, S. Hill, W. Gage, C. Danells, V. Closson, B. Maki, and
W. McIlroy, “Gait and standing posture in patients with multiple
sclerosis,” Gait and Posture, vol. 21, p. S136, 2005.

[4] H. Pigot, B. Lefebvre, J. Meunier, B. Kerherv, A. Mayers, and
S. Giroux, “The role of intelligent habitats in upholding elders
in residence,” in 5Th international Conference on Simulations in
Biomedicine, 2003, pp. 497–506.

[5] T. Batisheva, L. Rusina, and D. Skvortsov, “Biomechanical symptoms
from gait and posture in patients after stroke,” Gait and Posture,
vol. 21, p. S105, 2005.

[6] J.-Y. Yang, J.-S. Wang, and Y.-P. Chen, “Using acceleration measure-
ments for activity recognition: An effective learning algorithm for
constructing neural classifiers,” Pattern Recogn. Lett., vol. 29, no. 16,
pp. 2213–2220, 2008.

[7] R. K. Ganti, P. Jayachandran, T. F. Abdelzaher, and J. A. Stankovic,
“Satire: a software architecture for smart attire,” in Proceedings of
the 4th international conference on Mobile systems, applications and
services. New York, NY, USA: ACM, 2006, pp. 110–123.

[8] A. Mannini and A. M. Sabatini, “Machine learning methods for
classifying human physical activity from on-body accelerometers,”
Sensors, vol. 10, pp. 1154–1175, 2010.

[9] M. Xu, S. Iyengar, A. Goldfain, A. RoyChowdhury, and J. DelloStritto,
“A two-stage real-time activity monitoring system,” in 8th Interna-
tional Conference on Body Sensor Networks (BSN), 2011.

[10] J. He, H. Li, and J. Tan, “Real time daily activity classification with
wireless sensor networks using hidden markov model,” in 29th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, 2007, pp. 3192–3195.

[11] D. O. Olgun and A. Pentland, “Human activity recognition: Accu-
racy across common locations for wearable sensors,” in IEEE 10th
International Symposium on Wearable Computers, 2006, pp. 11–13.

[12] J. Boyd and H. Sundaram, “A framework to detect
and classify activity transitions in low-power applications,”
in Proceedings of the 2009 IEEE international conference
on Multimedia and Expo, ser. ICME’09. Piscataway, NJ,
USA: IEEE Press, 2009, pp. 1712–1715. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1698924.1699355

[13] “Medicine and science,” Sports and exercise, vol. 32, no. 8, pp. S439–
S516, 2000.

[14] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” in Proceedings of the IEEE, 1989,
pp. 257–286.

[15] D. Zhang, D. Gatica-perez, S. Bengio, and I. Mccowan, “Semi-
supervised adapted hmms for unusual event detection,” in IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR, 2005, pp. 611–618.

1797


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

