
  

  

Abstract— The aim of this paper is to describe and present 

the results of the automatic detection and assessment of 

bradykinesia in motor disease patients using wireless, wearable 

accelerometers. The current work is related to a module of the 

PERFORM system, a FP7 project from the European 

Commission, that aims at providing an innovative and reliable 

tool, able to evaluate, monitor and manage patients suffering 

from Parkinson’s disease. The assessment procedure was 

carried out through a developed C# library that detects the 

activities of the patient using an activity recognition algorithm 

and classifies the data using a Support Vector Machine trained 

with data coming from previous test phases. The accuracy 

between the output of the automatic detection and the 

evaluation of the clinician both expressed with the Unified 

Parkinson’s disease Rating Scale, presents an average value of 

[68.3±8.9]%. A meta-analysis algorithm is used in order to 

improve the accuracy to an average value of [74.4±14.9]%. 

Future work will include a personalized training of the 

classifiers in order to achieve a higher level of accuracy. 

I. INTRODUCTION 

radykinesia, one of the main symptoms of Parkinson´s 

disease (PD), is defined as reduced speed when 

initiating and executing a single movement and progressive 

reduction of its amplitude, up to complete cessation during 

repetitive simple movements [1]. This symptom might 

represent the most promising motor progression marker of 

the disease [2]. Bradykinesia appears to result from the 

inability of PD’s patients to maximize their movement speed 

when required to drive internally their motor output. It has 

been suggested by Peschel [3] that various aspects appear to 

contribute to the self-initiation of movements: 1) the 

selection of movement speed, 2)  the  selection  of  the  

direction  of movement, 3)  the  selection  of the  kind  of 

movement and 4) the movement timing. In particular, PD’S 

patients have trouble with movement time. Bradykinesia is 

caused by the loss of dopaminergic nigrostriatal projections 

from the substantia nigra pars compacta (SNc) [4][5]. It has 

been suggested that reduced dopaminergic input to the 
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striatum may result in increased neuronal firing of the 

inhibitory basal ganglia output and disturbed firing patterns 

with increased synchronization [5][6][7]. Such changes 

cause bradykinesia, rigidity, tremor and postural instability, 

although the underlying mechanisms leading to these 

symptoms are still not understood [8]. Currently the 

dopamine precursor levodopa (L-dopa) is the most efficient 

treatment for the improvement of Parkinson´s disease signs 

and symptoms. However, abnormal involuntary movements 

(dyskinesias) are motor fluctuations that occur in the 

majority of PD’s patients undergoing this treatment [9][10]. 

Thus, excitability abnormalities developing in cortical and 

subcortical motor networks are currently thought to be the 

most likely pathophysiological explanation for bradykinesia 

[11][12]. Based on functional models for the basal ganglia, it 

has been suggested that hypokinesia may be caused by an 

abnormally strong inhibition of thalamocortical projections 

[13][14][15] that decreases the contribution of the basal 

ganglia to the cortical ‘‘motor set’’ energizing of the motor 

output system [16][17]. 

The current work is related to “A soPhisticatEd multi-

paRametric system FOR the continuous effective assessment 

and Monitoring of motor status in Parkinson’s disease and 

other neurodegenerative diseases” (PERFORM), within the 

7th Framework Programme of the European Commission 

[18]. It aims at providing an innovative and reliable tool, 

able to evaluate, monitor and manage patients suffering from 

motor neurodegenerative diseases. It is composed by a 

network of wireless accelerometers located on the limbs, 

trunk and belt of the patient. The software developed selects 

the best possible combination of sensors and statistical 

features to relate the output provided by the accelerometers 

to the Unified Parkinson’s Disease Rating Scale (UPDRS) 

[19] values, used by clinicians to follow the progression of 

the disease. Developed as a C# library, the prototype accepts 

an accelerometer signal as input extracts the corresponding 

features and classifies them according to the knowledge 

acquired through previous training sessions. 

This paper describes the methodology used to assess the 

severity of Bradykinesia and the results of the tests 

performed according to the methodology proposed. 

II. STUDY DESCRIPTION 

A. Subjects and measurement setup 

 The performance of the bradykinesia severity assessment 

method was evaluated through several design phases [20]. 
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During the first design phase, data was collected on test 

patients in a supervised environment, with the collaboration 

of the medical staff. The dataset used in this study included 

trials with twenty PD’s patients, ten in the University Clinic 

of Navarra (Spain) and ten in Ioannina University Hospital 

(Greece), resulting in twenty full cross validations used to 

train the algorithm and test the method [20]. Each subject 

performed a supervised protocol both during good clinical 

status, ON, and during the wearing off efficiency of the 

medication, OFF status. The patient was requested to carry 

out daily basic activity (walking, lying on bed, sitting on a 

chair, drinking a glass of water, opening and closing a door). 

The described protocols were recorded with a video camera 

and sensors twice a day while the patient was hospitalized. 

During each recording, patients were evaluated by a 

neurologist using the UPDRS scale. TABLE I shows the 

protocol overview with UPDRS score of the Bradykinesia 

symptom and the number of recordings carried out, both in 

ON and OFF phase.   
TABLE I 

RECORDINGS IN TRAINING PHASE 

Bradykinesia UPDRS Score 0 1 2 3 4 

Number of recordings 13 27 6 8 2 

Once the data has been stored, the processing begins. The 

first intention is to create a classifier. The steps to achieve 

this can be described as: 1) selecting the data that 

corresponds to activities of interest (e.g. walking and arm 

extension); 2) calculating the resultant vector from the data 

of each of the three axes; 3) filtering the resultant vector; 4) 

extracting features and 5) classifying the features. The 

underlying idea is that the filtered signals contain only the 

low frequencies, useful to calculate the slow movements of 

patients. As mentioned, filtered signals were analyzed after 

running an activity recognition algorithm designed to 

identify time frames when the patient was either walking or 

extending/flexing his arms, since bradykinesia is only 

evident when the patient moves. The signal was then split in 

5-second sliding windows with 50% of overlap (epoch), 

while the features used as input of the classification module 

were extracted from each epoch. To classify the epochs, 

different classifiers were used, to find the optimum solution 

in terms of accuracy and processing time. Range and Root 

Mean Square (RMS) were the best performing features, after 

different configuration testing. Regarding the classification 

method, best results were obtained with the Support Vector 

Machine (SVM) method. This methodology has been 

implemented in a C# library. 

 During the second phase, data was collected in an 

unsupervised environment and with the collaboration of a 

caregiver during a week. Data was acquired during an eight-

hour daily session in which patients carried out their normal 

daily activity. Moreover, two daily standard clinical protocol 

sessions were performed during the trials under the 

supervision of a clinician. The Neurologist examined the 

patients distributing the UPDRS twice a day in ON and OFF 

stages. Subsequently, the protocol sessions were video 

recorded and matched with the data logger and sensors 

recordings. During the protocol session the patients carried 

out the following activities twice a day: sit, read, drink a 

glass of water and walk for approximately two minutes. At 

the end of the day, data was processed using the training set 

computed in the previous phase and the output were checked 

with the results provided by the clinician, as a result of the 

evaluation of the standard clinical protocol. This phase 

included trials with twelve patients in Pamplona (Spain).  

B. System for data collection 

The wearable device used to recording the accelerometer 

signals consists of a tri-axial accelerometers’ set used to 

record the accelerations of the movements at each patient 

limb, one accelerometer and gyroscope (on the belt) used to 

record body movement accelerations and angular rate, and a 

data logger that receives and stores all recorded signals in a 

SD card. Sensors were placed in every limb and belt to allow 

the system detecting and quantifying a wide range of 

symptoms and measures of Parkinson’s disease patient i.e. 

tremor, bradykinesia, dyskinesias and freezing of gait. All 

sensors transmit data using Zigbee protocol to a logger 

device, with 62.5 Hz sampling rate (16 milliseconds between 

samples). 

Once the data has been stored in the SD card, the Local 

Base Unit (LBU) is responsible for the identification and 

quantification of the patient symptoms and the recording of 

other useful information for the evaluation of the patient 

status. The LBU receives patient signals and detects the 

targeted patient symptoms. For each symptom, a dedicated 

submodule processes the relevant signals, detects the 

symptom episode and quantifies it into a severity scale from 

0 to 4, according to the UPDRS scale for PD’s patients.  

C. Patients data  

Patients fulfilling the following criteria were eligible for 

the study: diagnosis of Parkinson’s disease, aged between 

40-75 years old, ambulatory and capable of complying with 

study requirements, receiving stable dopaminergic treatment, 

experiencing motor fluctuations and presence of a 

responsible caregiver who can cooperate with the patient and 

his/her neurology specialist. The exclusion criteria for this 

study were suffering from dementia, psychosis (simple 

visual hallucinations excluded) or a significant systemic 

disease (such as: cancer, hepatic or kidney dysfunction, etc.). 

During the second phase of the trials, twenty-four PD’s 

patients were selected (6 women and 18 men) with an age 

between 52 and 79 years old (mean 62.77± 6.5 years). 

D. Experimental Setup  

The aim of the experiment was to test the algorithms 

previously developed in an uncontrolled environment. In 

order to achieve this goal, the patients were asked to wear 

the sensors at home during a week. The devices were pre-

programmed to continuously monitor the patient for 8 hours 

every day. The patient had to wear the devices in the 

morning, and had to switch them on 10 minutes before the 

start of the pre-scheduled monitor session. The patient was 

then free to carry out his/her usual daily activities. During 

the day the patient had to introduce the information about 

the medication intake and the meal intake, using the 
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patient’s GUI. At the end of the day the

connect the device to the PC, where the d

signal processing started automatically. A

trained to help and assist the patient during

Two daily visits from the clinician to the

took place in order to evaluate the patient’s s

In order to test the algorithms previously

PD’s patients from University Clinic of 

were selected (2 women and 4 men) with an

and 68 years old (mean 64.63 ± 2.25 years).

III. METHODOLOGY  

A. System description and classification me

During the first phase of the PERFO

intelligent system, that monitors the moto

patients, was developed in order to detect

episodes and quantify them into a severity s

according to the UPDRS scale for PD’s patie

The second phase aimed at testing 

subsystem called Local Based Unit (LBU)

the output with the annotation of the med

data is stored in the patient device the sign

automatically. Different modules were cre

detect and quantify different symptoms as sh

 
Fig. 1 Signal process schema of LBU 

In order to assess the bradykinesia sever

for activity recognition has been implemen

movement events. Then Range and RM

extracted from the signals acquiring from th

Finally a SVM classifier, trained with data

the previous phase is used to quantify the

processed epoch [20]. Once all classifiers a

was stored inside a local repository. TAB

example of the Bradikynesia output. Every 

to a classified 5-second interval (epoch).  
TABLE II 

BRADYKINESIA OUTPUT EXAMPLE

Start Time End Time Severity C

2011-02-08 

15:42:33:658 

2011-02-08 

15:42:38:633 
1 

2011-02-08 

15:42:36:154 

2011-02-08 

15:42:41:129 
1 

The output format includes the s

Bradikynesia, computed in the interval be

and end time as the result of the classificatio

is a combination between the classifier pro

movement certainty. The first one indicat

relationship between the value and 

hyperplane, while the second one indicates

the patient had to 

e downloading and 

. A caregiver was 

ing the recordings. 

the patient’s home 

’s status.  

sly developed, six 

f Navarra (Spain) 

 an age between 63 

s). 

 method 

FORM project, an 

otor signals of the 

ects the symptoms 

y scale from 0 to 4, 

atients.  

g the patient-side 

U) and comparing 

edical stuff. Once 

ignal process starts 

reated in order to 

 shown in Fig. 1. 

 

erity, an algorithm 

ented to select the 

RMS features are 

 the limbs sensors. 

ata collected from 

the severity of the 

s are run the output 

BLE II shows an 

ry line corresponds 

LE 

Certainty Overlap 

66.77% 50 

89.47% 50 

severity of the 

between start time 

ation. The certainty 

probability and the 

cates the grade of 

d the associated 

tes the certainty of 

movement during the epoch. The la

overlap value, in this case 50%. T

rebuild the timeline. 

B. Accuracy of classifiers 

Once all signals are processed, 

with the clinician annotation in orde

of the classifiers, expressed as the p

matches with the clinician annotation

C. Meta-analysis algorithm 

 The goal of the meta-analysis a

epoch and detect events, transitio

“noise” from the output. The n

calculated using both UPDRS va

values. Actually for each time slot th

two different sources which provide

only one. Hence, given a timeslot it 

information from two epochs using a

value will take the information from

certainty values. Then, the algorith

UPDRS value to the output provide

this value will be assigned to the curr

IV. RESULT

 The values of the accuracy show

correlation between the clinician eva

detected by the Bradikynesia classif

twice a day, a visit from the clinicia

place in order to perform UPDRS ev

the signal recorded during the eval

comparison between clinician evalu

the classifier. TABLE III shows the 

with six patients from Clinica Univer
TABLE III 

RESULTS OF PROCESSE

 
Annotated 

Epochs 

Correct 

Epochs 

Accur

[Mean±St

Patient 

A 
134 84 [53.4±17

Patient 

B 
78 53 [65.7±9

Patient 

C 
126 95 [70.93±1

Patient 

D 
38 25 [68.1±16

Patient 

E 
91 67 [78.1±20

Patient 

F 
277 218 [76.5±4

TOTAL 744 542 [68.3±8

The annotated epochs column 

movement epochs during the test

Epochs column defines the number 

with clinician annotation. The accur

average accuracy computed during 

along the week. The last two colum

and minimum values of the accura

summary of the results of the week

show that the global outputs of the

are in agreement with the medical 

values of accuracy could be caused 

 

e last column contains the 

. This value is useful to 

d, the output is compared 

rder to define the accuracy 

 percentage of epochs that 

ion during the test. 

algorithm is to take the 

ition periods and remove 

 new UPDRS value is 

values and the certainty 

t there is information from 

ides more information than 

 it is possible to merge the 

g a weighted sum; the new 

om the UPDRS values and 

ithm will find the closest 

ided by the classifiers and 

urrent time slot.  

LTS 

ow that there is a strong 

evaluation and the severity 

ssifier. During a week and 

cian to patient’s home took 

 evaluation. The portion of 

valuation was used to the 

aluation and the output of 

he results of this test phase 

versitaria de Navarra.  

SED DATA 

uracy 

±Std.Dev] 

Accuracy 

[Max] 

Accuracy 

[Min] 

±17.9]% 86.7% 37.5% 

9.4]% 80.9% 58.3% 

±16.3]% 100% 52.9% 

16.2]% 87.5% 56.3% 

20.3]% 100% 42.9% 

4.9]% 83.3% 69.4% 

±8.9]% 78.1% 53.4% 

n reports the generated 

ests, while the Corrected 

er of epochs that coincide 

curacy column defines the 

ng the UPDRS evaluation 

lumns show the maximum 

uracy. The last row is the 

ek evaluation. The results 

the bradykinesia classifier 

al evaluation. The lowest 

ed by the use of a different 
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methodology evaluation between the classifier and the 

clinicians. The classifier computes the value of the 

Bradikynesia every 5 seconds using only the motor behavior 

information while the evaluation of the clinician is defined 

as the global slowness of movement during the daily visit. 

 In order to improve the results of the output classifier, an 

algorithm for meta-analysis is used. TABLE IV shows the 

results of six PD’s patients using the meta-analysis 

algorithm. The aim of this algorithm is to smooth the peak 

generation during the processing. These peaks introduce an 

error in the overall evaluation of the accuracy during the 

acquisition period. An overall comparison between the 

results of TABLE III and IV shows that the accuracy of the 

classifier outputs increases when the meta-analysis 

algorithm is applied. The mean accuracy value only decrease 

in the case of Patient A, this could be caused by the 

variability of the bradykinesia symptom in the patient. 

However the results of TABLE IV show that the 

Bradikynesia classifier reaches a highest value of maximum 

accuracy when the meta-analysis algorithm is applied.   
TABLE IV 

RESULTS OF PROCESSED DATA WITH META-ANALYSIS ALGORITHM 

 
Annotated 

 Epochs 

Correct 

Epochs 

Accuracy 

[Mean±Std.Dev] 

Accuracy 

[Max] 

Accuracy 

[Min] 

Patient 

A 
134 86 [48.8±30.3]% 92.9% 20.0% 

Patient 

B 
78 62 [83.5±3.2]% 85.7% 81.3% 

Patient 

C 
126 104 [78.1±17.6]% 100% 50% 

Patient 

D 
38 26 [70.9±23.3]% 100% 57.1% 

Patient 

E 
91 70 [82.1±22.3]% 100% 42.9% 

Patient 

F 
277 254 [91.9±6.7]% 100% 75.0% 

TOTAL 744 602 [74.4±14.9]% 91.9% 48.8% 

V. CONCLUSION 

 The proposed system provides a useful tool for the 

analysis of the bradykinesia in PD’s patients. The large 

variability and the unpredictability of the movement may be 

the cause of classification errors. In fact it is complicated to 

find a common pattern in different PD’s patients in an 

unsupervised environment. The results of the second phase 

of testing are satisfactory, reaching a high level of accuracy, 

taking in account that evaluation of the status of the patient 

by clinicians presents a statistical error of 5% due to the 

subjective characteristics of the UPDRS scale. The test–

retest reliability of the motor UPDRS in patients with PD’s 

has excellent test–retest reliability, with an interclass 

correlation coefficient (ICC) of 0.90 [21].  

 To confirm and improve these initial results, not only the 

testing phase will continue on a larger sample of patients, 

but the classification method will also need to be 

personalized, in order to achieve a higher level of accuracy, 

for example introducing special classifier trained for each 

patient in order to adjust the parameters.  
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