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Abstract— This paper presents a novel, low-cost, real-time
adaptive multimedia environment for home-based upper ex-
tremity rehabilitation of stroke survivors. The primary goal
of this system is to provide an interactive tool with which
the stroke survivor can sustain gains achieved within the
clinical phase of therapy and increase the opportunity for
functional recovery. This home-based mediated system has
low cost sensing, off the shelf components for the auditory
and visual feedback, and remote monitoring capability. The
system is designed to continue active learning by reducing
dependency on real-time feedback and focusing on summary
feedback after a single task and sequences of tasks. To increase
system effectiveness through customization, we use data from
the training strategy developed by the therapist at the clinic
for each stroke survivor to drive automated system adaptation
at the home. The adaptation includes changing training focus,
selecting proper feedback coupling both in real-time and in
summary, and constructing appropriate dialogues with the
stroke survivor to promote more efficient use of the system.
This system also allows the therapist to review participant’s
progress and adjust the training strategy weekly.

I. INTRODUCTION

Stroke is a leading cause of disability in the United States.
Every 40 seconds, someone in the United States suffers a
stroke [11], often leading to physiological impairment. Up
to 85% of stroke survivors have a sensorimotor deficit in the
arm, such as muscle weakness, abnormal muscle tone, and
lack of coordination during voluntary movement [5]. It has
been shown that rehabilitation involving motor learning can
lead to recovery of lost functionality [10].

Research groups that have applied interactive therapy to
stroke rehabilitation have demonstrated improvements in
kinematic and functional performance of the upper extremity
[9], [12]. However, the feedback provided by most existing
systems does not communicate multiple aspects of the move-
ment simultaneously and in an integrated manner. Our lab de-
veloped an Adaptive Mixed Reality Rehabilitation (AMRR)
system [6] to address this limitation. It utilizes an integrated
environment of both physical elements and interactive audio
and visual feedback to train reach and grasp activities. The
AMRR system was demonstrated improvement in movement
performance and clinical scores [2].

Repeated visits for clinical-based therapy are costly to
a patient, both financially and logistically. Recent research
and development has led to telerehabilitation systems for
home-based therapy. These systems range in approaches to
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utilize virtual environments [8] and hand-adorned sensors
[7]. These systems face challenges in terms of engagement
of feedback, the lack of system adaptation to individual
performance and the lack of a plan for evolving tasks
and feedback paradigms over an extended period of time.

Fig. 1. The physical setup
of the HAMRR system.

Therefore, we develop a
Home-based Adaptive Mixed
Reality Rehabilitation system
(HAMRR) to integrate engaging
multimedia feedback, semi-
automatic adaptation and
evolving task and feedback
plan in a low-cost multimedia
environment. This HAMRR
system is designed to support
unsupervised reach and grasp
training at home over 12-24
months (after clinical therapy
using our AMRR system). There
are three key contributions in this
system - (a) a low-cost physical
design that supports multimodal sensing and allows stroke
survivors to setup easily at home, (b) an engaging and
hierarchical multimedia feedback design, from real-time
to summary feedback, which allows stroke survivors to
experience evolving feedback and facilitates active learning
by gradually reducing dependency on media feedback, and
(c) a semi-supervised adaptation framework that customizes
the system based on the participant’s progress automatically
and allows a therapist to review the progress and adjust
training strategy weekly. In this paper, we refer to a stroke
survivor as a participant.

This paper is organized as follows. We summarize key
features in our system design in Section II. In Section III, we
present the adaptation framework. We show the functionality
test in Section IV and conclude the paper in Section V.

II. HOME-BASED SYSTEM DESIGN

In this section, we introduce the physical setup, system
architecture, and feedback design of our HAMRR system
for training reach and grasp movement for stroke survivors.

A. Physical Setup

The physical setup of our HAMRR system includes a me-
dia center, a table and a chair (see Fig. 1). The media center
is a slender aluminum tube frame with a cantilevered base
that supports a 27-inch iMac computer, two speakers and
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three infrared Opti-Track cameras. The table is constructed
from an aluminum tube frame. It is lightweight, such that
it can be removed from the media center when not in use.
The table contains three forms of embedded sensors. The
rest area of the participant’s impaired arm is covered by
pressure sensors to check for starting location. Two buttons
with capacitive sensing are placed close to the participant’s
unimpaired hand that allows the participant to interact with
the system dialog. There are three tangible objects (base,
button and cone) embedded on the table for the participant
to reach. Each object has embedded color LEDs to provide
feedback. Both button and cone objects have sensors to
track object manipulation. The chair is embedded with force
sensing resistors (mounted on the back and seat) to track
participant’s torso movement. The sensors are connected to
the system through an XBee connection, with a sampling
rate of 70 Hz. Compared to the hospital-used AMRR system,
the HAMRR system significantly reduces sensing cost, and
simplifies participant’s setup. The participant only need to
wear a wristband that is attached a reflective marker for 3D
hand tracking.

B. System Architecture

Fig. 2. The home-based system architecture.

The HAMRR system architecture is shown in Fig. 2. The
participant’s movement is captured by multimodal sensing
that includes tracking 3D hand position by optical cameras,
tracking object manipulation by force sensors on objects
as well as tracking torso movement by force sensors on
the chair. Based on the sensing data, we can derive kine-
matic features related to the reach and grasp movement.
These features are used to generate tangible/visual/auditory
feedback that helps the participant self-assess the movement
performance. The kinematic features are used for quantitative
performance evaluation, which informs the adaptation frame-
work to customize training tasks and feedback environments.
Our system provides a system dialog to guide the participant
through training. Our system also allows a therapist to
review the participant’s performance data weekly and make
appropriate adjustments in adaptation strategy.

C. Multimedia Feedback

Our HAMRR system intuitively communicates to the
stroke survivor levels of his/her performance and direction
for improvement by using three types of feedback - tangible
feedback from color LEDs embedded within the object,

auditory feedback from two speakers and visual feedback
rendered on the iMac screen. The feedback is designed
to provide dynamic feedback experience that evolves over
time, incentivizes training, facilitates active learning, and
accommodates more complex tasks. Therefore, the feedback
is structured to provide information about the movement in
three different levels - (a) real time, (b) post-trial summary,
and (c) post-set summary. For any training set (including
several reaches), only one of these three levels is selected.

Fig. 3. Visual feedback summaries after a trial ((a) and (b)) and after a set
((c) and (d)). (a) represents an efficient reach and (b) represents trajectory
error to the right. (c) is a representation of efficient and consistent task
completions and (d) represents disjoint movement.

Real-time feedback is coupled to the participant’s hand
trajectory and speed, which are key features for completing
a reach and grasp activity. The LEDs embedded within the
object base change color based on the participant’s trajectory
error. The green, orange and red colors indicate no error,
small error and big error respectively. Real-time auditory
feedback communicates reaching speed to the participant
by note density. The sound is designed to encourage the
participant to reach in a natural speed. In post-trial summary,
a visual summary of trajectory performance for a reach is
communicated by the color and spatial distribution of stones
in the water, as seen in Fig. 3a and 3b. This display summary
helps the participant begin to think about the strategy of
execution. In post-set summary, either a visual summary or
an auditory summary communicates to the participant an
affective tag with his/her performance (or one movement
aspect) after a set of reaches, such as disjoint movement or
slow movement. For example, in Fig. 3d, abrupt changes in
the boats contour communicate a pattern of reaching with-
out elbow-shoulder joint coordination. Visual tags include
trajectory inaccuracy, jerkiness, disjoint movement, and task
incompletion. Auditory tags includes ballistic movement,
slow movement, inconsistent completion time, and hesitant
movement. The details of feedback design can be found in
[1].

D. Interactive Dialog

Our system provides an interactive dialog when a new
task or feedback stream is introduced. During the dialog,
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the participant is firstly shown graphic instructions. Then
the participant can practice with interactive feedback several
times until he/she understands the instructions. As part of the
interactive dialog, the participant is asked several questions
with yes/no answer to check if he/she understands the
feedback mappings. The participant can use the unimpaired
hand to select the answer using the embedded table buttons.

III. SEMI-SUPERVISED ADAPTATION FRAMEWORK

The HAMRR system is adaptable to address each par-
ticipant’s impairments based on his/her progress. Both tan-
gible objects and interactive feedback can be adjusted to
maintain a level of challenge and engagement appropriate
for each stroke survivor. The adaptation is crucial to pro-
mote more efficient use of the system, resulting in better
active learning and movement performance. The adapta-
tion in home-based system is very challenging due to the
absence of a therapist. Therefore, we need an automatic
adaptation framework which customizes the system based
on the participant’s progress. Our basic idea is to integrate
the real-time quantitative kinematic evaluation, correlation
analysis between feedback and movement performance, and
therapist’s weekly recommendations into a semi-supervised
adaptation framework. The adaptation framework customizes
the system in the participant’s daily training automatically
and allows a therapist to review the rehabilitation progress
weekly, and fine-tune the training strategy.

A. Adaptation Components

In our HAMRR system, both tangible objects and feed-
back parameters can be changed algorithmically. The adapta-
tion for tangible objects includes changing the object position
and the object type (e.g. base, button or cone).

The feedback adaptation includes three parts: (a) feedback
level, (b) media selection, and (c) feedback sensitivity. First,
the feedback can be generated either in real-time (e.g.
feedback from color LEDs embedded within the object), or
after a trial (e.g. visual summary of stone distribution in Fig.
3b), or after a set of reaches (e.g. boat shape in Fig. 3d).
At each feedback level, we can select proper media streams
for different training purposes. For example, if we focus on
smooth reaching acceleration and deceleration at real-time
feedback level, we might turn off the tangible feedback from
embedded LEDs and turn on the auditory feedback. Finally,
each feedback is associated to a sensitivity filter to map
the raw data (finite or infinite) into a normalized movement
feature that is used to generate feedback. Thus, the feedback
sensitivity can be controlled by filter parameters.

B. Graphical Adaptation Representation

We now discuss how to represent system adaptation using
a graph. First, we consider our system as a network G that
has vertex set V and edge set E (i.e. G = (V,E)). Each
vertex vi indicates a training scenario (or system state) that
sets up every component in our system, including object and
feedback information. A system state can be represented by a
state vector. Each component of the vector is corresponding

to an object property (e.g. object ID or object type) or
feedback information such as feedback level, on/off of media
streams or feedback sensitivity parameters. The vertex set V
includes all possible pre-defined system states {v1, v2, . . .}.
Each directional edge eij indicates a possible system change
from state vi to state vj . Hence, an adaptation action is
represented by an edge in the system network, indicating
a change between two training scenarios (or system states).
Fig. 4 shows an example of four training scenarios (v1−v4)
and possible adaptation options (jump between scenarios,
e.g. e12, e34). The table on the right shows some system
state parameters for these four scenarios.

Fig. 4. Graphic representation of four training scenarios (or system states).

The system network is constructed by experts, including
therapists and media experts. The experts first define all
training scenarios including training foci and the correspond-
ing object and feedback selection. Each training scenario is
represented by a system state (or a vertex in the network).
The experts determine the value for each component (i.e.
object and feedback parameters) for each predefined system
state. Secondly, the experts determine possible adaptation
options (or move from a state to another) by drawing an
arrow between two training scenarios (or state vertices).
The experts determine adaptations carefully to balance the
continuity and variation.

C. Decision-Making Process

The training starts from an initial training scenario which
is determined by experts based on the participant’s re-
habilitation at hospital. After every set (including several
reaches), an adaptation decision is made to either stay in the
current training scenario (or current state) or move to another
training scenario. Thus, an adaptation decision includes two
steps: (a) determining stay or move, and (b) determining a
new scenario if move is chosen.

The decision for stay or move is made based on the length
of duration staying in the current scenario and the partici-
pant’s performance in movement aspects that are focused.
The move decision is made if either the participant stays
in the current scenario for too long (e.g. over 5 sets) or
the participant’s performance in focused movement aspects
satisfies the expectation (e.g. trajectory error is less than
2cm).

If we decide to move, the new scenario should focus on
the movement aspects in which the participant has major
deficit and at the same time does not introduce a big vari-
ation compared to the current scenario. We address this by
searching over all neighbor scenarios of the current scenario

1829



in the system network for the best neighbor with maximum
utility. Since the network topology is determined by experts
to balance the variation and continuity, moving from the
current scenario to any neighbor should not introduce a big
variation. We developed a utility function to evaluate all
neighbor scenarios in terms of effect on the participant’s
improvement. The neighbor with maximum utility provides
the best assistance. Next, we discuss the utility function.

D. Utility Function

The utility function integrates three main components -
prior, history, and performance expectation. The prior utility
for each training scenario (or state vertex) represents the
priority for that scenario to be selected. The prior utility is
set at the beginning based on the participant’s rehabilitation
in hospital and fine-tuned weekly based on the participant’s
progress by a therapist. For example, if the therapist wants
to only use scenario vi, vj , vk for a week training, this can
be achieved by setting the prior utility for these three states
like (up(vi) = 0.5, up(vj) = 0.3, up(vk) = 0.2) and zero
for all other system states. The history utility uh signifies
the usage distribution over all training scenarios in the past
several days. The performance expectation utility ue for a
training scenario measures distance between the expected
performance and the predicted performance for the partic-
ipant after using the scenario. The participant’s movement
performance can be measured using kinematic impairment
measurement (KIM) [3]. The expected performance can be
determined by the therapist and the performance prediction
after using a training scenario can be done using our previous
research on media adaptation model [4]. The overall utility
function is a linear combination of three utilities as follows:

U = ωp · up + ωh · (−uh) + ωe · (−ue) (1)

where ωp, ωh, and ωe are three weights. The history utility
and performance expectation utility have negative sign be-
cause the higher usage and expectation-prediction distance
for a scenario will reduce its chance to be selected.

E. Therapist Intervention

Our semi-supervised adaptation framework allows a ther-
apist to fine-tune the adaptation strategy. The therapist may
review the participant’s training progress weekly and ad-
just the adaptation strategy using a GUI connected to the
home system through internet. The therapist can change
the system network topology by adding/removing edges
to enable/disable adaptations between scenarios (or system
states), update the prior utility over different scenarios, and
adjust the weights for three utilities.

IV. FUNCTIONALITY TEST

We tested the functionality of our HAMRR system by
three unimpaired subjects. The average processing time for
kinematic analysis per frame is 5ms which is less than the
time interval between two frames (i.e. 10ms for frame rate
100Hz). Thus, the kinematic analysis does not introduce
delay. The average processing time for post-trial kinematic

evaluation is less than 0.5s, which is well below the 2s-3s
rest time between trials. Each subject used the system for
about 1.5 hours, without software/hardware problems.

V. CONCLUSION AND FUTURE WORK

In this paper, we presents a Home-based Adaptive Mixed
Reality Rehabilitation (HAMRR) system for upper extremity
rehabilitation of stroke survivors. This HAMRR system
has low cost sensing, engaging and hierarchical multimedia
feedback and semi-supervised adaptation framework to cus-
tomize the training. The system is designed to sustain gains
achieved within the clinical phase of therapy and increase
the opportunity for functional recovery. This system also
allows the therapist to review participant’s progress and
adjust the training strategy weekly. Future work includes
studying the efficacy of the HAMRR system. We plan to do
a user study of 10 unimpaired subjects to determine if the
feedback summary efficiently communicates the movement
tags (e.g. slow movement, jerkiness). Each subject is asked to
match the visual and auditory summary with movement tags.
We also plan another user study with two stroke survivors
to assess the integration and user-friendliness of use of
HAMRR within the home environment.
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