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Abstract— Electromagnetic interactions with biological sys-
tems promise new possibilities in medical applications and
synthetic biology. Creating a controlled action in biological
systems requires an efficient transduction of the electromagnetic
energy to thermal or mechanical biosignals. In this paper, we
present the design and optimization for a nano-scale magnetic
torque transducer based on a tunable nanomechanical res-
onator. Operating in the resonance regime allows the presented
system to efficiently absorb a large amount of energy from
the source. In addition, systems tuned on well separated
resonance frequencies may operate simultaneously without any

interference. We describe the theoretical model of the system
and show the possibility of achieving the resonance in biological
settings for a system with reasonable dimensions.

I. INTRODUCTION

Remote interaction with biological systems has the po-

tential to enable a large number of applications such as

the investigation of mechanical properties of the cell and

molecular signalling pathways (e.g., through targeted actu-

ation of mechano-sensitive and thermo-sensitive ion chan-

nels), the modulation of cell functions, and controlled drug

delivery [2], [3], [4], [5].

We propose a design for a passive nano-scale wireless

receiver that can operate in a viscous bio-material and that

can be tuned within a wide range of radio frequencies (100s

MHz - few GHz). The receiver is composed of an integrated

magnetic nanoparticle with a carbon nanotube. We show

through theoretical analysis that such a receiver can effec-

tively resonate with radio frequency signals and efficiently

transduce the high frequency magnetic torque into actuation

(e.g., 100nm carbon nanotube bound to 100nm magnetic

nanoparticle can resonate at ∼ 150 MHz). This is made

possible thanks to advances in the manufacturing of carbon-

nanotubes and magnetic nanoparticles. Tunable resonance at

high frequency is the key in enabling multiplexed interactions

and more sophisticated targeted actuations.

Nano-resonators have received significant attention in the

last few years. However, most previous work investigates

mechanisms operating in vacuum and relying on the effects

of electrical fields [9], [13], [10]. The viscosity of biological

tissue and its interaction with the electrical field make such

approaches impractical for resonance at high frequencies.

Similar resonators with a ferromagnetic tip mounted on a

mechanical cantilever have been used in vibrating cantilever
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magnetometry [6], [7]. The interaction of electro-magnetic

fields with magnetic particles in biological settings was

partially investigated in [1], [8]. However, such studies only

considered the effects of extremely low frequency fields,

which resulted in considering the over-damped regime and

overlooking the possibility of a high-frequency resonator.

Finally, non-resonating transduction of relatively high fre-

quency electromagnetic fields (i.e., 100s KHz) into actuation

was investigated using the AC susceptibility of magnetic

nanoparticles but showed very limited efficiency (i.e., 10−5

of the energy is transduced into actuation the remaining was

dissipated as heat) [11], it was however utilized for targeted

hypothermia against cancerous cells [12].

The structure of this paper is as follows. Section II

presents the basic theoretical model of the system. The

kinetic and fluid dynamics analysis is presented and the nec-

essary conditions to achieve resonance are derived. Section

III presents the design considerations along with numerical

design examples. Section IV discusses the results and Section

V concludes the paper. In the following sections, boldface

letters represent vectors. For a given vector v, ev denotes a

unit vector of its direction and v denotes its magnitude.

II. THEORETICAL MODEL

The resonator considered in this design consists of a

multi-wall carbon nanotube (MWCNT) cantilever, which is

clamped to the surface, and firmly attached to a spherical

magnetic nanoparticle (MNP) on the free end. An alternating

external magnetic field exerts a magnetic torque on the MNP

creating an elastic deflection in CNT (See Fig. 1).

In this section, we provide a detailed theoretical analysis

for the aforementioned resonator. First, to simplify the theo-

retical analysis, we propose the following set of assumptions:

• The deflection of the cantilever beam is generally a

three-dimensional problem. However, we reduce the

problem to 2-D by neglecting the Poisson’s ratio of zero

(ν = 0).

• We consider small deflections of the cantilever beam

(sinθ = θ ).

• Forces and torques due to gravity and geomagnetic field

are neglected.

• The MNP is a single-domain magnetic particle of

magnetite (Fe3O4) with a permanent magnetic moment,

therefore showing no superparamagnetic behavior.

• We neglect the cantilever’s mass since it is much smaller

than the mass of MNP.

• We do not consider any plastic deformation in the

cantilever, hence we have completely elastic deflections.
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Fig. 1. The illustration of the system. (a) an overview of the components of the nanomechanical resonator at initial (Left) and operating (Right) conditions.
Dimensions and angles used in the theoretical analysis are shown. (b) Cross section of the carbon nanotube cantilever.

Assume R and L denote MNP’s radius and the cantilever’s

length, respectively. Assume the resonator sits in the xy

plain. Initially, the magnetic moment of MNT, µ , aligns

with the cantilever direction (y axis). A horizontal alternating

magnetic field, B=Bcos(ωt), provides the external magnetic

torque, τm = µ ×B, to the resonator. The combination of

the elastic and magnetic torques along with the dissipating

torques (viscous drag forces etc.) create a damped harmonic

oscillator. The equation of motion for rotational oscillations

of the systems is the following:

Iθ̈ +Cθ̇ + kθ = τm (1)

where θ denotes the angular displacement of the beam, and

I, C and k are the system’s moment of inertia, dissipation

coefficient and coefficient of elasticity resulting from the

cantilever deflection, respectively.

A. General Steady-State Solution and Resonance Conditions

The natural frequency and damping ratio for a system

described by Eq. 1 is as follows:

ω0 =

√

k

I
(2)

ζ =
C

2Iω0

=
C

2
√

kI
. (3)

The steady state solution for the system is given by

θ (t) =
µB

IZmω
cos(ωt +Φ), (4)

where Zm(ω) =
√

(2ω0ζ )2 +(ω2
0 −ω2)2/ω2 is the system’s

impedance, and Φ(ω) = arctan(2ωω0ζ/(ω2 −ω2
0 )) is the

phase shift from the driving torque.

For such an oscillator, resonance is possible if and only

if ζ <
√

2/2, which means the system is underdamped.

The corresponding resonant frequency is given by ωr =
ω0

√

1− 2ζ 2 at which maximum deflection, θmax, occurs.

Using Eq. 2 and 3, the resonance condition and the resonant

frequency will be

C <
√

2kI (5)

ωr =

√

2kI −C2

2I2
. (6)

For a small damping ratio (i.e. ζ ≪ 1, typically less than

0.05), the quality factor of the resonance equals Q = 1/2ζ =√
kI/C. This is particularly useful for determining the res-

onator’s absorbed power. By definition,

Q = ωr ×
Maximum energy stored in the system

Power absorbed by the system
, (7)

where the maximum energy stored in the system is given by

Emax = kθ 2
max/2. Finally the bandwidth (or absorption width)

is ∆ω = ωr/Q.

B. Model-Specific Solution

In this section, we derive the equations for I, C, k, and

τm for the presented resonator by computing the torques

and moments of inertia with respect to the cantilever’s base.

External electromagnetic torque is given by

τm = µ ×B = µBsin(
π

2
−θ )cos(ωt) (8)

= µBcos(θ )cos(ωt)

= µBcos(ωt). (9)

Neglecting the mass of the cantilever, the moment of inertia

of the system equals the moment of inertia for a spherical

mass (i.e. the MNP) with respect to cantilever’s base, and is

given by

I =
2

5
mR2 +mD2, (10)

where m is the mass of the MNP, and D = (l +R) is the

distance of MNP’s center of mass from the base. Therefore,

I = m(
2

5
R2 +D2) (11)

=
4π

3
ρR3(

2

5
R2 +(l+R)2), (12)
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where ρ is the density of the magnetite.

The elasticity coefficient (i.e. equivalent spring constant)

for a cantilever beam is given by Bernoulli-Euler equation.

For small deflections of the beam with a torque load at the

tip, we have

k =
EIc

l
, (13)

where E , Ic, and l are Young’s modulus, second moment

of cross-section, and length of the beam [15]. MWCNT is

basically a cylinder, thus Ic = π
4
(r4

o − r4
i ) where ro and ri

are outer and inner radii of the CNT.

Dissipation Mechanisms: Several dissipation mecha-

nisms may affect the oscillations of the resonator. The

dissipations in nanoresonators can be divided into two cat-

egories: a) Intrinsic losses, which are due to imperfections

and interactions within the structure of the resonator (e.g.

phonon-phonon interactions, thermoelastic effect). b) Ex-

trinsic losses, which are the result of interactions with the

surrounding environment (e.g. viscous friction, clamping

losses). In this model, we only consider the extrinsic dis-

sipations. The viscous nature of the biological media makes

the viscous friction the dominant factor among the extrinsic

losses. For the sake of simplicity in this paper, we only

consider dissipations due to drag forces in the fluid. Small

particles such as nanoresonator components have very small

Reynolds number (Re → 0), thus fluid behaviour follows

the Stokes’ law. For a spherical object of radius R in this

condition we have,

FD = 6πRηv, (14)

where η and v are fluid viscosity and velocity of the object.

Substituting for v = (l +R)θ̇ , and C = τD/θ̇ , we have

C =
τD

θ̇
=

FD × (l+R)

θ̇
= 6πRη(l+R)2. (15)

Note that because of the small moving area, the drag forces

on the cantilever are negligible and not considered.

Substituting from Eq. 12, 13, and 15 results in the ex-

panded form of resonance condition below:

54η2(l +R)4 < EρR(
2

5
R2 +(l+R)2)(r4

o − r4
i ). (16)

III. DESIGN AND OPTIMIZATION

Having explored the theoretical model for the system,

this section discusses the design and optimization of the

system. The goal is to design and to optimize a resonator

that operates at a given resonant frequency in a given mi-

croenvironment. Identifying the key parameters of the design

is necessary to achieve the desired performance. The equa-

tions derived in the preceding section include two different

types of parameters. First are the material properties, which

include Young’s modulus (E), density (ρ), and viscosity of

the microenvironment (η). Second are structural parameters,

which are MNP radius (R), CNT length (l), and radii (ro

and ri). Adjusting the material properties could potentially

Fig. 2. (Color online) Resonant frequency ωr (upper graph) and Quality
factor (lower graph) for reasonable range of values for MNP radius (10 nm
< R < µm) and CNT length (5 nm < l < µm). The points located outside
the colored region represent overdamped oscillations. Graphs are generated
in MATLAB.

require radical changes in the design and setup and might not

be possible at all. In contrast, structural parameters provide

much wider range of flexibility, thus make good tuning

parameters for the resonator.

A numerical example for design and optimization of a

real world system is presented below. Note that in this

example R and l serve as tuning parameters and the rest

of the parameters are given as follows: MNP is made of

magnetite (Fe3O4) with desity of ρ = 5200 Kg/m3. The

cantilever beam is a carbon nanotube with Young’s modulus

of E = 5 TPa, and outer and inner radii of ro = 5 nm, ri = 2

nm, respectively. The system will be installed in an aqueous

environment, therefore η = 10−3 Pa.s . Finally, the overall

size of the system should stay within reasonable range for

biological application (i.e. less than few micrometers).

We first look at the possibility of the resonance for

such a system. The resonance happens provided that the

inequality presented in Eq. 16 is fulfilled. Fig. 2 shows

the resonant frequency and quality factor for the system for

reasonable values of R and l. Data from Fig. 2 suggests that

resonant conditions are achievable for a large range of tuning

parameters (Colored region).

The next step is to find the optimal configuration (or an
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Fig. 3. (Color online) Optimization look-up graph for a magnetite/(5,2)-
CNT resoator operating in water at 60 MHz (blue line) and 300 MHz
(purple). Any point on an specific frequency line is a valid configuration for
R and l, which results in a resonator with resonant frequency of the line’s
nominal frequency. Graph is generated in MATLAB.

optimal set of configurations) in which the resonator operates

at desired resonant frequency. This is possible by determining

the cross section of the graph of resonant frequency as

a function of R and l at given frequency. Operating at

a frequency is not possible if the cross section is empty.

Otherwise, each point on the cross section represents a valid

configuration in which the resonator operates at the desired

frequency. Fig 3 illustrates this process for our numerical

example. As shown on the graph, (R = 100nm, l = 42nm)

configuration leads to resonant frequency of fr = 50 MHz,

while fr = 300 MHz can be achieved by choosing (R =
50nm, l = 30nm). These are reasonable values in today’s

manufacturing technology.

IV. DISCUSSION

The tiny size of nanoresonators significantly limits their

amount of energy. With such limited energy budget, over-

coming the ambient thermal noise (i.e. kBT , where kB is

the Boltzmann constant and T is the temperature in Kelvin.)

becomes a challenging obstacle. In order to have a meaning-

ful impact on the surrounding microenvironment, the total

energy of the resonator must exceed kBT . This determines

the sensitivity of the resonator to external actuations.

Another important challenge is the mechanism by which

the CNT is attached to the MNP. A very strong (covalent)

bond is required to achieve good performance. While the

process of attaching an MNP to a CNT is still underexplored,

recent research demonstrates manufacturing similar bonds by

chemically modifying the surface of MNPs and CNTs [16].

Finally, even in the case of good coupling between the

nanoresonator and the external field, the oscillations eventu-

ally become non-linear. This makes the design that is only

based on linear resonance flawed and not sufficient. In this

work, we skipped the non-linear analysis due to the limited

space.

V. CONCLUSIONS

We present a nano-scale radio-receiver that is capable

of achieving resonance in biological settings. The system

is based on a magnetic nanoparticle attached to a carbon

nanotube cantilever. The receiver transduces the magnetic

field into a radio-frequency torque. The benefit of using

magnetic fields is that, unlike electric fields, they couple

weakly with non-targeted biological tissues. This makes

tunable resonance at fairly high frequencies feasible in bio-

logical settings, therefore enabling several unique capabilities

such as multiplexed interaction and targeted actuation. We

conduct theoretical analysis for the system and predict the

desired functionality within reasonable scale for frequency

(few MHz - few GHz), carbon nanotube size (100s nm),

and magnetic nanoparticles size (100s nm). We believe this

will open several new avenues for research in the areas of

targeted actuation of mechano-sensitive and thermo-sensitive

ion channels, the modulation of cell functions, and controlled

drug delivery.
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