
  

 

Abstract— We described the development and testing of a low 

cost, easily constructed electroencephalographic (EEG) 

acquisition amplifier for noninvasive Brain Computer Interface 

(BCI) education and research. The acquisition amplifier was 

constructed from newly available off-the-shelf integrated circuit 

components, and readily sends a 24-bit data stream via USB 

(Universal Serial Bus) to a computer platform.  We demonstrate 

here the hardware’s use in the analysis of a visually evoked P300 

paradigm for a choose one-of-eight task.  This clearly shows the 

applicability of this system as a low cost teaching and research 

tool. 

I. INTRODUCTION 

ANY people with severe motor disabilities have 

disruption in the communication pathway between the 

brain targeted muscles [1]. Many studies have demonstrated 

BCIs utilizing non-invasive scalp EEG recordings as way of 

developing an alternative output communication pathway 

from brain (e.g. [1]-[5]).   

The skills for implementing and improving BCIs range 

from the basics of electronics and biopotential recordings, to 

the implementation of off-line and real-time signal 

processing, to the cognitive and human factors considerations 

in making a human-machine interface.  Indeed, the 

interdisciplinary nature of this work often leads experts in one 

field or another to neglect the complexity of the challenges of 

the others.  Therefore, it is of great educational benefit to use 

BCI as a platform for an integrated introduction to these 

topics.  Additionally, the tools used in BCI overlap heavily 

with those used for cognitive and brain-state studies in 

psychology, human factors, transportation safety and 

neuroeconomics. 

To that extent, the need to provide a robust and safe 

accessible platform for students to acquire high-quality EEG 
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and directly and easily access the data stream in real time 

from a broad range of computational platforms presents itself.  

We have in the last three years offered at Penn State 

University an introductory course on non-invasive BCIs, and 

found that one of the significant limitations of the course was 

that it utilized a highly limited number of commercial, 

clinical-grade EEG amplifiers. The costs limited the number 

of available recording platforms, which in turn led to 

significantly limited access for the students to the hardware. 

This limited access contributed to reluctance by students to 

fully investigate the potential of the hardware. In addition, it 

significantly restricted the students’ ability to creatively 

develop their own interfaces and projects outside the 

commercially provided programming environment. 

Our objectives were to design an acquisition amplifier for 

high performance EEG recording that could be readily 

distributed to each student, would be readily interfaced to a 

computer through many different computational platforms, 

and would provide an educational platform for teaching both 

the hardware design elements as well as be exceedingly easy 

to use. 

We note that there are other EEG and biopotential 

platforms available, some targeted to engineering education 

that typically cost $3000-$6000 (USD). Others now available 

targeted to the gaming community and cost $200-$500 [6], 

[8], [9]. We have developed a new low cost 8 channel EEG 

acquisition hardware whose component costs run less than 

$100 (USD) with of order 10 components, suitable to be 

packaged within a kit for each student in a course to own and 

develop analysis software with on their own computer.  

We demonstrate the acquisition system’s use with a 

visually evoked P300 paradigm in a choose-one-of-eight 

paradigm of the type used to train a classic P300 type 

speller [4]. 

II. SYSTEM ARCHITECTURE 

The development of this system was enabled by the 

production of a commercially available biopotential amplifier 

(ADS1298, Texas Instruments, Inc.) that forms 8 channels of 

preamplifiers and 24-bit continuous-time sigma-delta 

analog-to-digital converters (CT  ADC) with digital 

communication interfaces and other peripheral circuits. The 

key advantage of the CT  ADC in this architecture is that 

they effectively preclude the need for anti-alias filtering prior 

to digitization [7], [12], [15]. The high bit number and 

dynamic range of these ADCs allow for DC coupled 

recordings with almost all the signal processing then 
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relegated to the computer. 

Our overall system design for this system included the 

requirements of low cost, low component count, ease of 

programming and interfacing with standard computers and 

human compatibility/safety.  

The complete EEG recording system architecture is 

illustrated in Fig. 1a.  We utilize standard gold-plated cup 

EEG electrodes common to other systems.  For course use, 

individual students can purchase and use their own disposable 

electrodes, or use course-purchased and cleaned gold-plated 

electrodes.   Standard electrodes plug into our proposed 

acquisition hardware either through standard touch-free 

safety plugs, although a less-costly model is to use standard 

DB-9 or DB-25 type plugs. The acquisition hardware, (Fig. 

1b.) comprises of three main components: an analog 

front-end (ADS1298, Texas Instruments, Inc.), a 

microcontroller (MSP430F5525, Texas Instruments, Inc.), 

and isolation circuitry for USB and power (ADuM4160 & 

ADuM5000, Analog Devices, Inc.). 

Analog front-end (ADS 1298): The use of ADS1298 aids 

remarkably in reduction of size, power and overall cost of the 

device [7].  It has a built-in programmable gain amplifier 

(PGA) with gain of 1-12, CT  ADC dedicated to each 

channel, internal reference for ADCs, an on-chip clock 

oscillator, and a serial peripheral interface (SPI) 

communication port.  Additionally it can be configured for 

various differential input and referencing configurations, as 

well as both passive and active ground configurations. 

Microcontroller (MSP430F5525): We use a low-power 

low-cost microcontroller for communicating with the 

ADS1298 and transmitting data from it to a computer.   The 

communication between the ADS1298 and the 

microcontroller is accomplished using a SPI.  For achieving 

maximum efficiency, we set up direct memory access 

transfers to receive conversion data from the front-end to be 

sent to the computer.  Communication between the 

microcontroller and the computer is done through a standard 

USB connection.  The microcontroller is programmed and 

configured as a USB CDC device (USB Communication 

Device Class), that can be recognized as a Virtual COM-port 

device, which can be easily accessed from within a variety of 

operating systems, such as Windows, Linux, and Mac OS, 

and software packages including MATLAB/Simulink, 

LabVIEW and student-written programs in C/C++. 

USB Data & Power Isolation:  We use an isolated 

DC-to-DC converter (ADuM5000) for supplying isolated 

power to the analog front-end for human safety. Also, we 

utilize a USB digital isolator (ADuM4160) for data 

transferring between the microcontroller and a PC with up to 

12 Mbps transfer speed. ADuM5000 and ADuM4160 chips 

support isolation voltages of 2500 Vrms and 5000 Vrms for 

1-minute duration, respectively [16], [17]. 

III. DEMONSTRATION OF USE 

We demonstrate here the quality and utility of this 

hardware platform. We compare signals with the 

commercially available g.USBamp biosignal amplifier 

(Guger Technologies, Inc.) [13], [14].  We then demonstrate 

its use in a visually-evoked P300 training paradigm from our 

BCI course. 

Alpha Waves:  One of the first and most readily observed 

EEG signals is the distinct alpha wave seen when the subject 

closes their eyes.  Short examples of EEG during eyes open 

and eyes-closed rest conditions are shown in Fig. 2, recorded 

from one of the authors (BJG) with the proposed amplifier 

from O1 referenced to CPz. This data was acquired with a 

sampling rate of 250 samples per second (SPS). The 

acquisition hardware is inherently DC coupled, and the CT  

ADC effects its own low-pass Nyquist filter to prevent 

aliasing.  The only post-processing filtering (non-hardware 

filtering) applied is a 0.5 Hz digital high-pass filter.  During 

the recording period, the subject was asked to spend 

consecutive one-minute periods in eyes-open then 

eyes-closed rest conditions.  

The spectral power densities for these high-pass filtered 

recordings are shown in Fig. 3a. Here we have averaged over 

the full 60-second periods of same behavioral condition. One 

should note that there is very little 60 Hz contamination of 

these signals neither in the raw traces, nor in the spectra.  

Because of the high dynamic range, this 60 Hz pickup can be 

 
                                                                                                                                                                                                                                      

 
 

 
Fig. 1.  Low-Cost 8-Channel EEG System for BCI Education.  (a) 

Overview of BCI system.  Electrodes on the head connect to our 

low-cost EEG acquisition hardware, which provides a continuous stream 

of digital data to the computer.  (b) Overall architecture of the 

acquisition hardware.  The main pieces involved are the TI-ADS1298 

biopotential front-end digitizer, a low-cost microcontroller to program 

the front-end and transmit the data to computer, and a USB and Power 
isolation stage.  (c) Photo of an 8-channel prototype. 
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readily removed in post-processing.   

Validation: In order to directly compare the signal quality 

with a commercially available unit, data was recorded from 

both the proposed amplifier and a g.USBamp sequentially by 

unplugging the leads from one amplifier and connecting them 

to the other without removing the electrodes from the 

subjects’ scalp.  The subject did not move substantially in 

position between recordings, and the two amplifiers were 

kept next to each other on the same table behind the subject. 

In Fig. 3b, we show the comparable averaged spectral power 

from the g.USBamp, under eyes-open and eyes-closed rest 

conditions, also recorded from O1 referenced to CPz and 

acquired at 256 SPS.   

Three key differences appear between these different 

recordings.  First, the low frequency components match 

approximately in distribution and magnitude. In other tests, 

both systems match in calibration when used with an isolated 

low-impedance waveform generator. Second, the g.USBamp 

has a much higher 60 Hz line noise, along with substantial 

additional harmonics and shoulder frequencies at ~ 60 ± 

16 Hz.  Second, the background noise level on the g.USBamp 

appears to be about an order of magnitude higher than that for 

the proposed amplifier at the highest frequencies.  We stress 

that neither system utilized any other filtering than their 

inherent anti-aliasing filters and the post-processing-applied 

0.5 Hz filter.  

Visually Evoked P300 Demo:  One of the most successful 

and useful of the non-invasive EEG-based BCI modalities 

utilizes the oddball evoked responses typically from visual 

stimuli.  Farewell and Donchin [4] are credited with 

demonstrating the first use of such responses to create a direct 

brain-activity to computer spelling system. Within such a 

paradigm, an array of targets – for example letters for a 

speller – are serially highlighted in random order.  Each time 

a target is highlighted, it evokes a measurable brain signal or 

potential – a visually evoked potential.  If the subject 

concentrates on a particular target, the shape and time-course 

of the evoked potential corresponding to that target is 

different, and has a marked peak at approximately 300 ms 

after the stimulus, denoted the P300.  Within an educational 

course, for a BCI choice system, students learn to detect in 

real time the visually evoked potential and discriminate from 

the presence or absense of the P300 which target the subject 

chose. In order to learn how to do so, and to determine the 

difference between the Choice and Not-Choice evoked 

potentials for a particular subject, we typically first have the 

subject focus on a prescribed (and known to the analyzer) 

ordering of targets. For this demonstration, we present the 

results of recordings and analysis from such a training period 

for a user not already well trained in the use of a P300 choice 

BCI. We present a pick 1 out of 8 targets (illustrated in Fig. 

4). The targets are flashed in random order for a period of 

80ms each and an inter-stimulus interval of 120ms, while the 

indicator in the center instructs the subject which target to 

choose. It has been shown that to achieve a better 

classification on a trial to trial basis one must average over at 

least 2 presentations of each target [4] in order to reduce 

variance and ensure the user didn’t momentarily lose 

concentration during the presentation of the stimuli. In one 

trial, we averaged over 3 presentations for each target, with a 

total of 40 trials in one recording session.  

Visual presentation as well as data acquisition was 

performed within the Simulink coding environment through a 

virtual COM port. Care was taken to track and minimize 

phase delays between when samples were taken vs. when 

they are analyzed in the code.   

 
Fig. 2.  EEG Quality from the Proposed Amplifier. Example signals 

recorded from O1, referenced to CPz, under eyes open and eyes closed 

conditions. Signals were acquired at 250 samples per second, and were 

later digitally high pass filtered at 0.5 Hz and offset for display 

purposes. Vertical Grid spacing is 20 μV. 

 

 
 

Fig. 3.  EEG Spectral Densities under Eyes-Open and Eyes-Closed 

conditions. Signals recorded from O1, referenced to CPz.  Behavioral 

conditions were held for consecutive 60-second periods.  Recordings 

were first high-pass filtered at 0.5 Hz, the average spectra computed 

using a Welch averaging scheme with half overlapping 8-second 

periods.  Signals were collected during the same sitting from the same 

subject with the same electrodes without removing the leads from the 

scalp from both (a) our proposed amplifier, recorded at 250 SPS and 

(b) a g.USBamp, recorded at 256 SPS. 

 
Fig. 4.  Visual Display for our Visually Evoked P300 Paradigm. We use 

a pick-1-of-8 in which the user focuses on or chooses one of the eight 

targets.  The targets are then highlighted serially in a random order by 

changing their color.  For training purposes, to create a series for which 

the analysis knows what the user chose, the central pointer instructs the 

user which target to choose. 
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We recorded data from one subject with almost no BCI 

training using from channels CPz, P3, P4, Pz, PO7, PO8, O1 

and O2, with Cz as both reference and ground. The incoming 

signal was sampled at 250 SPS using the proposed amplifier. 

Data analysis included the following steps.  First, all data 

was filtered using 5th order butter-worth filter with pass-band 

of 1-30 Hz. We then applied common spatial pattern (CSP) 

filter to the data [10], [11].  The CSP aims to create spatial 

mixtures of the channels under the assumption that the data 

comes from different sources that have different activations.  

Here we assume these are represented by times of Choice 

(having both visual evoked potential and P300), and time of 

Not Choice (having just visual evoked potential).  

The evoked responses average for all Choice and all 

Not Choice stimuli are shown in Fig. 5. One should note that 

the large difference near 300 ms post-stimulus time for those 

stimuli associated with Choice targets. In order to create a 

BCI discrete choice system, one needs to discriminate on a 

trial-by-trial basis which target was chosen. To do this, we 

next down-sample the data by a factor of 10, and use a 

Fisher’s linear-discrimination analysis (LDA) to separate the 

Choice from Not Choice evoked potentials.  To further test 

the performance of this discrimination, we separate the trials 

in to training and testing trials. This prevents our mistaking 

over fitting of the data for good predictive discrimination.  

Shown in Fig. 6 are the histograms of LDA values for the 

out-of-sample evoked potentials for Choice and Not Choice 

targets (the groups are well separated).  We get approximately 

an 80% correct identification of the Choice target. This 

reflects good performance for a first training set from an 

un-trained user.  

IV. DISCUSSION 

We have demonstrated here a low cost eight channel EEG 

acquisition hardware which can record human scalp EEG 

data with high fidelity.  Low cost here is low enough that such 

devices could be purchased by each student in a BCI or other 

EEG-related lab course. We have demonstrated the 

applicability of our proposed system using the well-known 

P300 paradigm for a BCI application. The above results prove 

that our proposed system can serve as a low cost teaching tool 

for undergraduate or graduate students in engineering and 

science majors. 
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Fig. 5.  Visually Evoked Potential for Choice and Not-Choice targets 

averaged over 40 trials.  Notice the large peak approximately 260 ms 

after the stimulus for Choice target stimuli. 

 

 
Fig. 6.  Classification of Out-of-sample Trials.  Shown is the histogram 

of LDA values for Choice and Not-Choice evoked potentials for out of 

sample data (25%).  The groups are well separated, and yield ~80% 

correct identification of the chosen target. 
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