
 

Abstract� Results of heart rate variability analysis depend

on the quality of the initial RR time series that is measured only

in one lead of the ECG. This work shows that RR time series

can subtly change from lead to lead so the choice of the

analyzed lead is another source of uncertainty. The standard

deviation of the differences of two RR time series obtained from

different leads can change from 0.5 ms to more than 20 ms

depending on the amount of noise, the morphological changes

of the QRS complexes, the strategies of fiducial point

determination and the measured subject. This source of

uncertainty is in healthy subjects greater than that associated

to the sampling frequency of the ECG for sampling frequencies

greater than 400 Hz.

I. INTRODUCTION

HE analysis of heart rate variability (HRV) has become

a clinical and research tool to study the modulation that

the autonomic nervous system exerts on the cardiovascular

system. The first step in any analysis of heart rate variability

consists on the measurement of the time intervals between

consecutive QRS complexes. The obtained time series (RR

time series) is further processed applying time domain,

frequency domain or non-linear dynamics techniques [1]. In

order to perform a reliable analysis, some concern has been

raised on the sampling frequency of the ECG that limits the

resolution of the RR time series. Some indices are very

sensitive to small errors in the determination of the time

series especially when the HRV is very small [2],[3].

This sensitivity raises another question: what�s the

difference in RR time series when obtained from different

leads of the ECG? Common sense dictates that using a

simple QRS detector or even refining the R wave location,

the results from lead to lead can be slightly different due to

changes in the morphology of the QRS complex or the

presence of noise. The aim of this work is to study these

lead-to-lead differences in the obtained RR time series and

compare them to the error due to the sampling frequency of
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the ECG.

Section II describes the employed multilead database, the

implemented QRS detector and some refinements of the R

wave location as well as the statistics employed to quantify

the differences in RR time series. Section III describes the

results and compares them with errors due to the sampling

frequency of the ECG. Section IV discusses the results and

draws conclusions.

II. MATERIALS AND METHODS

A. Description of the database

The multilead ECG database used in this work is the PTB

(from Physikalisch-Technische Bundesanstalt) Diagnostic

ECG database (PTBD) [4,5]. It consists on 549 recording

from 290 subjects. Each recording has the twelve

conventional leads (the standard limb leads: I, II, III, the

augmented leads: aVR, aVL and aVF, and the precordial

leads: V1 to V6) as well as the three Frank leads (X, Y and

Z). Each lead is sampled at 1 kHz.

From this database, 80 recordings correspond to 52

different healthy subjects and 368 recordings correspond to

148 subjects who suffered myocardial infarction. The rest of

recordings correspond to patients with conditions as

different as heart failure, dysrhythmia, hypertrophy, valvular

heart disease or bundle branch block.

In this work and due to the small chance of ectopic beats

and other arrhythmias we have primarily focused on healthy

subjects and the twelve conventional leads. From the 80

recordings, five were rejected due to the presence of

premature beats or other disturbances of rhythm (s0287lre,

s0305lre, s0311lre, s0328lre and s0502_re).

The database is freely available at

http://www.physionet.org/physiobank/database/ptbdb/

B. QRS Detector Description

The first processing step is to roughly locate every QRS

complex in each lead. The next step will be the refinement of

the QRS locations (fiducial point) and will be discussed in

the next subsection.

The employed QRS detector uses the smoothing

properties of the Hodrick-Prescott filter (HP filter) and a

nonlinear transformation in order to enhance the QRS

complex. The HP filter obtains a smooth version (t(n)) of

the input signal (x(n)) by least-squares minimization [6]:
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being l a parameter that controls the smoothness of the

output signal.

The algorithm works as follows:

1. Lowpass filtering of the ECG with l1 = 10
3

and l2 = 10
4

being t1(n) and t2(n) the obtained signals

2. Enhancement of the QRS wave by using
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3. Further smoothing using l3 = 10
6

to obtain ECGF(n)

4. Search of local maximum in ECGF(n) by a constant

threshold.

The threshold can be changed from lead to lead although

in most cases, half of the maximum of ECGF(n) works well.

We have adapted automatically the threshold computing the

RR time series for thresholds changing from 0.1 to 0.9 times

the maximum of ECGF(n) and choosing the threshold that

minimizes the standard deviation of the obtained RR time

series.

Figure 1 shows an example with the original signal

(precordial V2 lead), the enhanced signal and the output

signal.

Fig. 1.  Example of transformation of the ECG for the proposed QRS

detector

The first considered fiducial points (method 1) are directly

the output of this detector so they are the local maxima of

ECGF(n) that are greater than the threshold.

C. Fiducial Point Refinements

Four more fiducial point definitions have been considered

in this work in order to minimize the impact of the QRS

detector. All three methods start by bandpass filtering the

signal with bidirectional 4
th

order Butterworth filter. We

have chosen a high pass cutoff frequency of 1 Hz and a low

pass cutoff frequency of 30 Hz. Moreover, the magnitude of

the Hilbert transform of the filtered ECG has been computed

and has been smoothed (l2 = 10
4
). We have defined

observational windows of 100 ms centered at each detected

beat both for the filtered ECG (FECG) and the smoothed

Hilbert transform (SHECG)

Method 2 redefines the fiducial point as the maximum in

the window of FECG. Method 3 assigns the fiducial point to

the maximum in the window of SHECG. Method 4 takes the

window of FECG corresponding to the first beat as a pattern

to match. The fiducial points are obtained by maximizing the

correlation of the pattern with the other windows [7].

Method 5 is similar to method 4 but the pattern is obtained

by averaging all the observational windows of FECG.

D. Quantification of the effect of lead choice

For each lead of each recording and for the different

combinations of cutoff frequencies used to obtain FECG we

have defined five RR time series using the previously

described methods of fiducial point assignment. So, in each

recording for each method there are twelve subtle different

RR time series. Figure 2 shows two such RR time series as

well as their difference (DRR).

The standard deviation of the differences in RR time

series (SDDRR) have been computed for all the

combinations of leads. Because the distribution of SDDRR

is long tailed we have summarized the results by its mode

(D1), median (D2), mean (D3), mean of those values of

SDDRR that don�t exceed three times the mode  (D4) and

maximum (D5).

Moreover, the standard deviation of the differentiated RR

time series (rmsDD) [1] and the approximate entropy

(ApEn) [3] using m=2 and r=0.2 have been computed for

each lead. The mean and standard deviation of these indices

have been computed among leads. The standard deviation

normalized by the mean of the indices has been used as a

relative error that quantifies the effect of lead choice in each

recording.

III. RESULTS

Figure 3 shows an example on how SDDRR can change

among leads using method 5. The figure displays the

different combinations of standard deviations when

computing the differences between one lead (x axis) and

other lead (y axis). The colorbar shows the value of these

SDDRR in ms. Maximum differences are reached  when

comparing RR times series from lead 5 (aVL) and from lead

3 (III). For the computation of statistics characterizing this

array, the zero values corresponding to the diagonal where

rejected.

Figure 4 shows the histogram of SDDRR for the same

recording. In this case D1 is 0.74 ms, D2 is 0.71 ms, D3 is

0.73 ms, D4 is 0.73 ms and D5 is 1.27 ms. The values are

quite similar owing to the symmetry of the histogram.

Nevertheless, if the RR time series from one lead is
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substantially different than the rest, the indicators D1 to D5

can be quite different.

Fig. 2.  Example of differences of RR time series. In the upper panel, the
standard II and V1 leads of the same recording are shown. The lower

panel shows the difference between time series

Fig. 3.  Example of computation of SDDRR

Table I shows the mean value of the different estimators

of the effect of lead choice on the determination of the RR

time series. D1 to D5 characterize the SDDRR among leads

while the last two columns show the mean errors in indices

estimation.

As seen, Method 5 and 4 work very similar and minimize

the effect of lead choice. Nevertheless, the mean over the

recordings of the maximum SDDRR (the worst differences

among leads) is greater than 2 ms. The fiducial point of the

proposed QRS detector presents lower differences among

RR time series than the correction via maximum search or

using the Hilbert transform. The errors in rmsDD and ApEn

are, in average, between 2% and 3%. Figure 5 shows how

these indices change for method 2 and 5 in a certain

recording as well as the differences in RR time series when

comparing standard II lead and V4 lead.

Fig. 4. Histogram of SDDRR for the example of figure 3
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1 0.73 0.97 1.30 0.98 3.44 2.18 3.33

2 0.66 0.80 1.37 0.81 4.27 3.30 2.86

3 0.76 1.12 1.76 1.05 5.35 3.33 3.73

4 0.68 0.81 1.06 0.85 2.63 2.45 2.87

5 0.67 0.81 1.01 0.85 2.36 2.20 2.83

IV. DISCUSSION AND CONCLUSIONS

The RR time series can be subtly different depending on

which lead has been chosen. The standard deviation of the

difference between two RR time series obtained

simultaneously from different leads in the same subject

range in healthy subjects from 0.5 ms to as high as 25 ms

depending on the fiducial point method, the leads involved

and the subject. This effect can be regarded as another

source of uncertainty in HRV analysis.

Common practice in HRV analysis show that the greater

the sampling frequency of the ECG, the better the estimation

of the RR time series is. The digitizing error   due to the

sampling frequency (fs) has a typical uncertainty of [8]:

1
( )

· 6s

u RR
f

= (3)

In this work, the mean SDDRR is around 1 ms that is

equal to the error due to the digitizing error if the ECG were

sampled at 408 Hz.

The origin of the subtle differences in RR interval

determinations can be attributed to several causes but the

two most important are the different levels of noise among

leads that affect differently to the fiducial point assignment

and the morphology changes in the QRS from beat to beat.
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Fig. 5.  Example of effect of lead choice in the estimation of HRV
indices. Upper panel shows the differences when comparing two leads

(II an V4), middle and lower panel shows the estimation of rmsDD and

ApEn respectively for each lead. The solid lines are the indices for
method 2 while dashed lines are for method 5.

Fig. 6. Relationship between DRR and morphology changes in QRS
complexes. The upper panel shows the DRR when comparing V4 and

Standard II leads for a certain recording. Middle and lower panels are the

covariances of the QRS complexes with the first QRS complex.

As seen in figure 5, the DRR in the upper panel has a

pattern quite periodic. Figure 6 shows again this time series

and the covariance of the QRS complex with the first QRS

complex for the standard II and the V4 leads. As seen, the

three time series share the same rhythmicity (presumably the

breathing rhythm) but are not in phase.

So, as conclusion, the determination of RR time series is

conditioned by the ECG lead choice. Results in HRV

analysis may differ due to the analyzed lead, the strategy for

fiducial point determination, the amount of noise in the ECG

and changes in morphology of the QRS complex throughout

the recording.
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