
  

  

Abstract—The multiscale analysis of physiologic time series 
such as the RR interval time series has revealed that the 
entropy differs according to the scale. Furthermore, healthy 
subjects show different characteristics on the different time 
scales compared to patients. Instead of calculating entropies of 
the time series, the sequence of acceleration and deceleration of 
the instantaneous heart rate may also be investigated by means 
of binary symbolic dynamics. This kind of analysis revealed 
that the healthy heartbeat series also contains numerous 
regular binary sequences indicating runs of acceleration or 
deceleration. Here, we investigate whether this approach yields 
new information when applied to multiple time scales. We 
investigate the occurrence of binary patterns of length 8 on 
different time scales of heart rate series from healthy subjects 
and patients with congestive heart failure (CHF). Healthy 
subjects and CHF patients show different occurrences of 
binary patterns. These occurrences change especially on scales 
1 to 5. Healthy subjects show more pronounced changes than 
CHF patients. At larger scales only gradual changes were 
observed. In conclusion, the application of binary symbolic 
dynamics on different scales yields new information, in 
particular on small scales.  

I. INTRODUCTION 
HE variations of the instantaneous heart rate, i.e. heart 
rate variability (HRV), may be analyzed by various 

methods e.g. in the time and frequency domain [1]. Another 
methodological differentiation is to quantify HRV either 
with methods based on the variance of the time series (e.g. 
SDNN, variance descriptors of Poincaré plots, spectral 
measures) or methods based on the complexity of the time 
series (using e.g. entropy measures or symbolic dynamics) 
[2]. Furthermore, using appropriate methods (such as 
detrended fluctuation analysis - DFA) it has been shown that 
the heart rate time series shows fractal like scaling 
properties, i.e. similar structures or information appear on 
different time scales [3]. It has been shown that 
dissimilarities on multiple time scales can be quantified 
using e.g. entropies. I.e. each time scale also carries specific 
information that cannot be obtained on other time scales [4], 
[5].  
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It has been shown that the analysis of symbolic dynamics 
of the heart rate time series can be used to capture 
information on short time scales. The instantaneous heart 
rate can e.g. be symbolized by four different symbols 
reflecting the closeness of each interbeat interval to the 
average interbeat interval [6]-[8]. The complexity of such 
symbolic time series may be analyzed using the Shannon or 
Renyi entropy [6]. Using this kind of symbolization yields 
information in the form of frequencies of specific ‘words’ 
and forbidden ‘words’. This complements measures of 
spectral analysis in e.g. patients after myocardial infarction 
[8]. Another approach of symbolization is the division of the 
full range of cardiac interbeat intervals (minimum interbeat 
interval to maximum interbeat interval) into several 
equidistant classes [9]. Classifying this kind of 
symbolization with respect to the variations (i.e. frequencies 
of symbolic patterns with 0, 1 or 2 variations of the 
symbols) also supplements the information found in 
traditional frequency domain measures [10], [11]. The 
analysis of graded head-up tilt data showed that the 
frequencies of specific symbolic patterns may be used to 
assess sympathetic and parasympathetic modulations of the 
autonomic nervous system [11].  

A further approach is to symbolize the succession of 
accelerations and decelerations of the instantaneous heart 
rate with two different symbols. Short binary patterns have 
been extracted from the symbolized series and Approximate 
Entropy (ApEn) was utilized to measure of regularity 
(complexity) of the extracted patterns [12]. Although the 
heart rate dynamics of healthy subjects is known to show a 
high degree of complexity [3], regular binary patterns also 
appear very often [13]. Also, the heart rate dynamics of 
healthy fetuses show such characteristics as pregnancy 
progresses [14]. On the contrary, patients with congestive 
heart failure showed binary patterns characterized by a high 
level of complexity which is typical for random behaviour. 
Hence, this approach yields different information when 
compared to other variance based or complexity based 
parameters. 

The analysis of symbolic dynamics of the heart rate time 
series was used to investigate dynamical properties on short 
time scales. In this study we investigate symbolic dynamics 
of the heart rate time series of healthy subjects and patients 
with congestive heart failure on different time scales. 
Accordingly, we combine two different approaches, i.e. 
multiscale analysis and symbolic dynamics analysis, to test 
whether this approach also yields relevant information on 
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different time scales. 

II. METHODS 

A. Subjects 
Heartbeat time series from thirty healthy subjects (average 

age: 29 ± 8 years, 15 female) [15] and fifteen patients with 
severe CHF (NYHA class III-IV; age range 22-71 years; 
‘BIDMC congestive heart failure database’ taken from the 
Physionet-database; see http://www.physionet.org [16]) 
were analyzed. Holter ECGs of the healthy subjects were 
about 24 hours in duration. The times of the R-peaks served 
as the basis for further calculations. They had a precision of 
1 ms. Data of the CHF group were about 20 hours in 
duration. We relied on the information provided in the 
Physionet database. The data in the database (times of the R-
peaks and classification of the heartbeats) were taken as 
provided. The times of the R-peaks had a precision of 4 ms.  

B. Multiscale analysis 
The series iRR  of interbeat intervals serves as the basis 

for the multiscale analysis. A coarse grained series y(τ) with a 
scale factor τ is constructed as follows [4], [5]: 
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The series y(τ) can be thought of as a moving average 
covering τ values that is only calculated at instances 

τττ /...,,,, N1211 ++ . Scale factor 1=τ  represents the 
original series (RR-tachogram). In this study, course grained 
series were calculated for scale factors 201 ...,,=τ . The 

example in Fig. 1 (left) shows the effect of the coarse 
graining procedure for a RR interval series of a healthy 

subject. On scale 1=τ  (top diagram, original series) a large 
amount of short scale variations are visible. On scale 

20=τ  (bottom diagram) the large scale variations still exist 
but the short scale variations have obviously decreased. The 
length of the coarse grained series is N/τ  according to 
equation (1). 

C. Construction of symbolic sequences 
The series y(τ) ( τ/,...,Ni 1= ) served as the basis for the 

calculations. A binary sequence iS  ( τ/,..., Ni 2= ) was 

created using the differences )()()( τττ
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successive values of the series y(τ) (Fig. 2):  
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Hence, ‘0’ symbolizes a deceleration and ‘1’ an 
acceleration of the multiscale series y(τ). In the special case 
of 1=τ  (RR-tachogram) ‘0’ symbolizes a deceleration and 

‘1’ an acceleration of the instantaneous heart rate.  

D. Approximate Entropy (ApEn) of short binary patterns 
In this paper, we analyze dynamic properties of binary 

patterns of length 8 as a tradeoff between shortness of the 
patterns and sufficient differences of the different patterns. 
To illustrate the idea, consider the binary patterns 00000000 
and 01100010. The former is obviously more regular than 
the latter. I.e., the succession of 0s and 1s is easy to predict 
in the first patterns whereas this prediction is more difficult 
in the latter pattern. Approximate Entropy (ApEn) is an 
appropriate measure for the quantification of such aspects of 
binary patterns [12], [17]. For normal time series ApEn 
calculates the logarithmic frequency that sequences of length 
m that are close (within a tolerance r) remain close (within 
the same tolerance) in sequences of length m+1 [18]. 
ApEn(m,r) depends on the length m and the tolerance r and 
it assigns higher numbers to more irregular sequences. For 
binary patterns (i.e. binary calculations) the tolerance r is set 
to 1<r  and the length m is set to 1=m . As a result, a 
number reflecting the serial irregularity of the succession of 
0s and 1s is assigned to each binary pattern iS : the higher 

 
Fig. 2.  Example of the construction of the symbolic series Si for τ = 1, 
i.e. the RR-tachogram. From the binary sequence each binary pattern 
of length 8 is analyzed with respect to its regularity. 

 
Fig. 1.  Examples of coarse grained RR interval series of a healthy 
subject (left column) and a CHF patient (right column) for scales 

1=τ  (top, original series), 5=τ  (middle) and 20=τ  (bottom).  
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ApEn, the more irregular the binary pattern iS .  
Due to redundancies with respect to irregularities of the 

binary patterns, the 25628 =  different binary patters are 
assigned only 17 different values of ApEn. Hence, 17 
different pattern sets are created by merging the binary 
patterns with the same value of ApEn into one set. These 17 
pattern sets reflect dynamic properties ranging from regular 
to irregular [13].  

E. Statistics 
The relative occurrence of each pattern set (i.e., the 

relative occurrence of the binary patterns belonging to each 
pattern set) was calculated for each scale. The results of the 
binary analysis are presented as medians because some 
pattern sets showed skewed distributions [13].  

Appropriate to this nonparametric presentation, the 
distributions of patterns of healthy subjects and CHF 
patients were compared using the Wilcoxon rank sum test. 
The distributions of different scales were compared in the 
same manner. p<0.05 was considered statistically 
significant. 

III. RESULTS 
The results with respect to the relative occurrence of the 

pattern sets for the different scales are shown in Fig. 3. For 
the healthy subjects the most pronounced changes occur 
within scales 1 to 5 (Fig. 3a). The pattern sets 2 to 5 
containing regular binary patterns occur most frequently on 
scale 1. The occurrence decreases with increasing scale 
(p<0.001, scale 1 vs. scale 5). At the same time pattern set 1 
(binary patterns with alternations, i.e. 01010101), and 
pattern sets in the medium range of regularity (sets 6 to 10) 
occur more often (p<0.001, scale 1 vs. scale 5). Pattern sets 
with high irregularity (sets 11 to 17) also change in 
occurrence (except pattern sets 14 and 15, p<0.001 for the 
other pattern sets, scale 1 vs. scale 5). Qualitatively, the 
appearance of pattern sets seems to be reversed at large 
scales compared to scale 1. 

The CHF patients also show changes in the occurrence of 
the pattern sets between scale 1 and 5 (Fig. 3b). However, 
these changes are less pronounced compared to the healthy 
subjects. The occurrence of pattern set 1 and pattern sets in 
the medium rang decreases (p<0.05, scale 1 vs. scale 5; 
pattern set 8: n.s.) whereas the occurrence of pattern sets 2 
to 5 increases (p<0.01, scale 1 vs. scale 5). For the pattern 
sets with high irregularity only pattern sets 11, 12, 14 and 15 
show a change of occurrence (p<0.05, scale 1 vs. scale 5). 

The appearance of pattern sets for CHF patients on scale 1 
seems to resemble the occurrence of pattern sets in healthy 
subjects on larger scales (≥5). However, a quantitative 
comparison shows that all pattern sets (except pattern sets 6, 
9 and 12) occur differently comparing scale 1 (CHF patients  
vs. healthy subjects, scale 5). Similar results are obtained for 
larger scales.  

IV. DISCUSSION 
The human organism exhibits variations and oscillations 

on different time scales [19]. Multiscale analysis is an 
appropriate approach to investigate physiologic time series 
on different time scales [4], [5]. In this study, using 
symbolic dynamics, we investigated whether the sequence 
of acceleration and deceleration of the instantaneous heart 
rate also carries relevant information on different time 
scales.  

In healthy subjects the most pronounced changes of the 
occurrence of binary patterns were observed between scale 1 
(original time series) and scale 5. From scale 5 to scale 20 
only gradual changes occur. Hence, the coarse graining 
procedure shows large variations with respect to symbolic 
dynamics analysis only on small scales whereas coarse 
graining on large scales seems to result in similar dynamics 
from the point of view of symbolic dynamis. Interestingly, 
the occurrence of pattern sets that occur often clearly 
decreases whereas pattern sets that occur less often clearly 
increase. Hence, the occurrence of the pattern sets an large 
scales seems to be reversed compared to scale 1. This result 
indicates that most of the relevant information is carried on 

 

 
Fig. 3.  Relative occurrence of the 17 pattern sets on scales 
τ = 1,…,20 of (a) healthy subjects and (b) CHF patients. Note that 
scale τ = 1 represents the results of the original RR interval series. For 
better visibility the median relative occurrence of pattern sets 1,…,17 
is connected with lines for each scale. The pattern sets are arranged 
with respect to increasing irregularity of the binary patterns in the set. 
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scales 1 to 5. Hence, this kind of symbolic analysis captures 
mainly short-term information. This is consistent with the 
initial aim of this approach to symbolic analysis: to 
investigate dynamical aspects on short time scales [13].  

CHF patients also show differences in the occurrence of 
the pattern sets with respect to the different scales. Again, 
most pronounced changes appear form scale 1 to scale 5. 
However, compared to the healthy subjects the changes of 
occurrence on these scales do not reverse the distribution. 
Instead, the distribution seems to flatten gradually. 

Interestingly, the distribution of the occurrence of pattern 
sets of healthy subjects at larger scales (≥5) seems to 
qualitatively resemble the distribution of the occurrence of 
pattern sets of CHF patients at scale 1 (although the 
quantitative analysis reveals clear differences in the actual 
numbers). Hence, healthy subjects at larger scales and CHF 
patients at scale 1 seem to be close to the distribution of 
pattern sets that is obtained from randomized heart rate 
series [13]. As a consequence, the procedure for the 
generation of the coarse grained time series influences the 
sequence of acceleration and deceleration in such a way that 
it produces random like behavior when analyzed with binary 
symbolic dynamics reflecting acceleration and deceleration 
of the instantaneous heart rate. 

It has to be noted that the procedure used to generate the 
coarse grained time series is closely linked to a moving 
average calculation. Keeping in mind that a moving average 
acts like a low pass filter, it is obvious that this procedure 
generates time series that lack high frequency characteristics 
at larges scales (cf. Fig. 1). The effect of different filter 
characteristics on the distribution of the occurrence of the 
pattern sets needs to be investigated. 

In conclusion, the analysis of binary symbolic dynamics 
reflecting acceleration and deceleration of the instantaneous 
heart rate also carries relevant information on coarse grained 
series with scales >1. However, the main information is 
obtained on scales 1 to 5 because this kind of analysis 
captures mainly dynamical aspects on short time scales. It 
needs to be shown whether the procedure for the generation 
of coarse grained time series affects the results. 
Furthermore, physiological implications have to be 
elucidated. 
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