
 

 

 

  

Abstract— Machine-learning techniques have found 
widespread applications in bioinformatics. Such techniques 
provide invaluable insight on understanding the complex 
biomedical mechanisms and predicting the optimal 
individualized intervention for patients. In our case, we are 
particularly interested in developing an individualized clinical 
guideline on wheelchair tilt and recline usage for people with 
spinal cord injury (SCI). The current clinical practice suggests 
uniform settings to all patients. However, our previous study 
revealed that the response of skin blood flow to wheelchair tilt 
and recline settings varied largely among patients. Our finding 
suggests that an individualized setting is needed for people with 
SCI to maximally utilize the residual neurological function to 
reduce pressure ulcer risk. In order to achieve this goal, we 
intend to develop an intelligent model to determine the 
favorable wheelchair usage to reduce pressure ulcers risk for 
wheelchair users with SCI. In this study, we use artificial 
neural networks (ANNs) to construct an intelligent model that 
can predict whether a given tilt and recline setting will be 
favorable to people with SCI based on neurological functions 
and SCI injury history. Our results indicate that the intelligent 
model significantly outperforms the traditional statistical 
approach in accurately classifying favorable wheelchair tilt and 
recline settings. To the best of our knowledge, this is the first 
study using intelligent models to predict the favorable 
wheelchair tilt and recline angles. Our methods demonstrate 
the feasibility of using ANN to develop individualized 
wheelchair tilt and recline guidance for people with SCI. 

I. INTRODUCTION 
ressure ulcers significantly affect the quality of life of 
wheelchair users with SCI. Pressure ulcers have become 

the second cause of rehospitalization for people with SCI 
[4]. It is estimated that more than 50% of people with SCI 
will develop at least one pressure ulcer in their lifetime [13]. 
Annual U.S. treatment costs of pressure ulcers in people 
with SCI are approximately $1.3 billion, accounting for 25% 
of the total cost of treating SCI [3]. It is clear that research 
regarding the prevention of pressure ulcers remains a 
priority in people with SCI. 

 The current clinical practice uses wheelchair power seat 
function (PSF) to adjust tilt (a change of seat angle 
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orientation while maintaining the seat-to-back angle) and 
recline (a change of the seat-to-back angle) to reduce seating 
interface pressure to prevent pressure ulcers. The principle 
of wheelchair tilt and recline is based on the evidence that 
turning the patient every 2 hours results in a lower incidence 
of pressure ulcers [15]. Sitting-induced pressure could be 
relieved by performing wheelchair tilt and recline [10]. 
Generally, there is a consensus regarding the use of tilt and 
recline to reduce seating interface pressure; however, the 
recommended usage of tilt and recline differs among 
clinicians and facilities [5]. 

To determine the efficacy of seating conditions to reduce 
the pressure ulcers risk, skin blood flow response to loading 
pressure has been regarded as an accurate way [9][10]. 
Reactive hyperemia is a transient increase in skin blood flow 
after ischemia [2]. Both the magnitude and duration of the 
reactive hyperemia have been shown to relate to the 
magnitude and duration of the external loads [2]. The 
purpose of periodically performing pressure-relieving 
activities (e.g. tilt and recline usage) is to allow the 
development of reactive hyperemia to re-perfuse the 
ischemic tissues [10]. Inadequate blood flow increase to 
ischemic tissues may lead to pressure ulcers [14]. However, 
at what angle wheelchair tilt and recline usage provides 
adequate pressure relief for enhancing skin blood flow and 
soft tissue viability is not clear [9]. 

We performed a study to investigate the effectiveness of 
wheelchair tilt and recline on enhancing skin perfusion in 11 
wheelchair users with SCI [9]. The main factors include the 
commonly used tilt and recline angles, including tilt at 15°, 
25°, and 35° and recline at 100° and 120°. A combination of 
3 tilt and 2 recline angles resulted in 6 testing conditions. 
Based on the average skin perfusion on each testing 
condition, we found that as the angles of tilt and recline 
increase, the average skin perfusion also increases. Although 
this pattern works well in general, we found that it did not 
work on some individual cases, in which the increase of tilt 
and recline angles resulted in decrease of the skin perfusion. 
In fact, using the average data to classify wheelchair tilt and 
recline settings shares the same weakness as the current 
clinical practice that provides uniform guidance on 
wheelchair tilt and recline usage to patients with SCI. 
Therefore, it is highly desirable to develop an intelligent 
system that can predict the favorable wheelchair usage to 
reduce pressure ulcers risk for individual wheelchair users. 
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Machine-learning techniques can capture characteristics 
of interests based on examples (i.e., training data) even 
though the underlying nature, principles, and/or probability 
distributions are unclear. As a result, machine-learning 
techniques are well suited in this study because many 
factors, such as level of injury, completeness, duration of 
injury, etc., may interact with each other to affect skin 
perfusion. However, the nature and principles with regard to 
how these factors interact remain unknown [6]. In this study, 
we use artificial neural network (ANN) to construct an 
intelligent model that considers multiple factors and is able 
to predict whether a tilt and recline setting would increase 
skin perfusion for individual wheelchair users with SCI. 
ANN is a powerful computational model with many 
appealing properties, such as learning capability, 
adaptability, and ability to generalize [1]. All these 
properties are desirable in this study. 

To the best of our knowledge, no such intelligent models 
are currently available. Hence, the goals of this study are to 
(1) demonstrate the feasibility of using machine-learning 
techniques to construct such an intelligent model; and (2) 
investigate methods to determine the attributes relevant to 
skin perfusion and build the intelligent model based on the 
relevant attributes. The experience learned from this study 
will benefit investigators in this area. 

The rest of the paper is organized as follows. In Section II, 
we present the methods used in this study. Then, we show 
the experimental results in Section III, present the discussion 
in Section IV, and conclude in Section V. 

II. METHODS 
We performed a study [9] to investigate the blood flow 

response to wheelchair tilt and recline usage in 11 
wheelchair users with SCI. The main factors include the 
commonly used tilt and recline angles, including tilt at 15°, 
25°, and 35° and recline at 100° and 120°. The factorial 
design created 6 testing conditions (A1B1, A2B1, A3B1, A1B2, 
A2B2, and A3B2) as shown in Table I. The order of the 6 
testing conditions was randomly assigned to the subjects. 
Skin blood flow was continuously measured through the 
experiment. Each condition lasted for 10 minutes. The first 
5-minute was the sitting-induced ischemic period (no tilt or 
recline). The skin perfusion b0 was measured during the 
ischemic period. The next 5-minute was the pressure 
reduction period caused by performing wheelchair tilt and 
recline, during which the skin perfusion b1 was measured. 
The skin perfusion increase was computed by the ratio: 

β = b1 / b0         (1) 
In addition, the subject assumed a sitting posture of 35 
degree tilt and 120 degree recline for a duration of 5 minutes 
to restore blood flow supply to ischemic tissues between 
each conditions [10]. Each subject spent 90 minutes to 
complete the experimental protocol. 11 participants with 6 
testing conditions produced 66 skin perfusion data. 

 
A. Traditional Statistical Analysis 
We used traditional statistical approach to analyze skin 

blood flow response to wheelchair tilt and recline usage 
based on the average skin perfusion increase ratio �̅� on each 
testing condition. The averaged data demonstrates a strong 
pattern: as the angles of tilt and recline increase, the average 
skin perfusion increase ratio �̅� also increases. The 
wheelchair tilt should be at least 35° for enhancing skin 
perfusion over the ischial tuberosity when combined with 
recline at 100° and should be at least 25° when combined 
with recline at 120° [9]. 

Although the above pattern works well in general, we 
found that it did not work on some individual cases, in 
which the increase of tilt and recline angles resulted in 
decrease of skin perfusion. We used the average skin 
perfusion ratio �̅� to classify data in the same testing 
condition. Specifically, if �̅� > 1 on a particular testing 
condition (i.e., a particular tilt and recline setting), then we 
classify all the data on this testing condition as positive. On 
the other hand, if �̅� <= 1, all the data on this testing 
condition is classified as negative. Based on this method, the 
classification accuracy rate is only 59.38%. Therefore, the 
traditional way to investigate blood flow response to 
wheelchair tilt and recline usage is not satisfying. 

B. Using ANN to Study Blood Flow Response to 
Wheelchair Tilt and Recline Usage 
Since no such intelligent models are currently available, 

there is no previous experience to follow. In this study, we 
explore methods to determine the attributes relevant to skin 
perfusion and, then, build the intelligent model based on the 
relevant attributes.  

Specifically, we want to determine a function f(a1, a2, …, 
ak, t, r) → {0, 1}, where a1, a2, …, ak are attributes (or 
factors) of participants, such as level of injury, duration of 
injury, etc, and t and r are a particular tilt and recline setting. 
The purpose of the function f is that given a patient modeled 
with attributes 〈a1, a2, …, ak〉, the function f will determine 
whether the tilt and recline setting 〈t, r〉 will result in skin 
perfusion increase (denoted by 1; otherwise, 0).  

To determine the function f, we need to (1) prepare 
training data for machine-learning algorithms; (2) determine 
the set of attributes {a1, a2, …, ak} that is relevant to skin 
perfusion; and (3) establish an intelligent model based on the 
relevant attribute set such that function f can accurately 
classify existing and unseen data. 

1) To prepare training data. We collected participants’ 
attributes that are reported to be risk factors for pressure 
ulcers, including age (a), gender (g), duration of injury (d), 

TABLE I 
A REPEATED MEASURES FACTORIAL DESIGN 

 Wheelchair Tilt Angle (A) 

Wheelchair recline angle (B) 15° (A1) 25° (A2) 35° (A3) 
100° (B1) A1B1 A2B1 A3B1 
120° (B2) A1B2 A2B2 A3B2 
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level of injury (l), and completeness (c) [6][7]. The reason 
that we also consider demographic attributes is that SCI 
individuals with certain demographic attributes may be more 
vulnerable to pressure ulcers [6]. With existing information, 
we are able to derive an additional attribute, namely, age at 
onset of SCI (o) with o = a − d. Combining all the attributes 
together, we obtain a raw model for a participant as: 

〈a, g, d, l, c, o〉 ∈ P      (2) 
where P is the set of participants and a, g, d, l, c, and o are 
attributes defined as above. Then, the set of raw data is 
defined as: 
D = {〈 a, g, d, l, c, o, t, r, β〉 | 〈 a, g, d, l, c, o〉 ∈ P, 〈t, r〉 ∈ Γ 
}                 (3) 
where P is the set of participants defined in (2); Γ is the set 
of tilt and recline settings; and β is the skin perfusion 
increase ratio defined in (1). 

Based on D, we prepare the training data for attribute 
selection and classification algorithms. For any data 〈a, g, d, 
l, c, o, t, r, β〉 ∈ D, it is transformed into an example pair (〈a, 
g, d, l, c, o, t, r 〉, y), where 〈a, g, d, l, c, o, t, r〉 ∈ P × Γ ; y = 
1 iff β > 1 and, otherwise, y = 0. The data item 〈a, g, d, l, c, 
o, t, r〉 serves as the input to the machine-learning algorithms 
and y is the expected output. Then, all the training data is put 
into a set X as follows: 

X = {(〈a, g, d, l, c, o, t, r〉, y) | 〈a, g, d, l, c, o〉 ∈ P, 〈t, r〉 ∈ 
Γ , and y ∈ {0, 1}}         (4) 

2) To determine the relevant attributes. We take two 
steps to determine a subset of the attributes that is relevant to 
skin perfusion from the raw training data X (defined in (4)). 
In the first step, we use correlation-based feature subset 
selection (CFS) algorithm [8] to obtain a set of relevant 
attributes. CFS is a state-of-the-art attribute selection 
algorithm and is highly ranked in attribute selection 
repository [17]. We call the set of attributes returned from 
CFS as the core attributes set. This core set, however, may 
miss some relevant attributes. Hence, in the second step, we 
gradually add the remaining attributes to the core set, one 
attribute at a time. Each time when an attribute is added to 
the core set, we use ANN to construct the function f based 
on the new core attributes set.  

3) To establish the intelligent model by using ANN. 
Artificial neural network (ANN) provides a general and 
practical method for learning functions from examples 
(training data). An ANN consists of a set of processing units 
(neurons) that communicate among themselves by sending 
signals. The signals travel through weighted connections 
between neurons. Upon receiving signals, these neurons 
accumulate the inputs and produce outputs according to their 
internal activation functions. The outputs can serve as inputs 
for other neurons, or can be a part of the network outputs 
[12]. Learning is achieved through adjusting the weights of 
connections between neurons. 

Specifically, we use two approaches to build function f 
and examine its generalization ability. (1) We use all the 
data to train ANN and use the same set of data to test how 
well the learned function f classifies these data. We call this 

approach as “train and test with the same set”. When the 
training set is small, overfitting can easily happen. 
Overfitting refers to a situation where the classification 
algorithm may perfectly classify training data, but cannot 
generalize to correctly classify new data that is not observed 
before. Hence, (2) we perform N-fold cross-validation to 
minimize overfitting impacts. N-fold cross-validation refers 
to dividing the training data into N different sets. This 
approach runs ANN N times, each time using a different set 
as the testing set and combining the rest N − 1 sets as the 
training set. Therefore, ANN is always tested with unseen 
data at each time. The N results from the folds are averaged 
to produce a single accuracy estimation [12]. The 10-fold 
cross-validation is the most commonly used method [11]. 

III. RESULTS 
In this section, we first present the result of the set of core 

relevant attributes returned from the attribute selection 
algorithm CFS. Then, we discuss how to refine the core 
attributes set and build the intelligent model. 

A. Core Relevant Attributes 
By running CFS on the set of raw training data X (defined 

in (4)), we obtained a subset of attributes, 
C = {level of injury, age, duration of injury}   (5) 

The order of the attributes in C is arranged according to their 
relevance to skin perfusion according to CFS. To check 
whether the core set misses any other relevant attributes, we 
add the remaining attributes to the core set C, one at a time. 
Then, we use ANN to check whether the inclusion of the 
new attribute will improve the classification accuracy. 

B. Construction of the Intelligent Model 
By projecting the core attributes onto the raw data set X, 

we obtain a core data set Xcore. Then, we train ANN to learn 
function f based on Xcore. As discussed before, we train and 
test ANN with two different approaches, namely, “train and 
test with the same set” and “10-fold cross-validation”. From 
Table II, we can see that the learned function can correctly 
classify almost all the data (96.88%). However, overfitting 
does happen because the accuracy rate for 10-fold cross-
validation drops to 70.31%. 

TABLE II 
EXPERIMENTAL RESULTS 

 Train and test with 
the same set 

10-fold cross-
validation 

Xcore 96.88% 70.31% 
Xcore ∪ {gender} 100% 75% 
Xcore ∪ {completeness} 100% 70.31% 
Xcore ∪ {aos} 96.88% 70.31% 
Xcore ∪ { gender, completeness } 96.88% 71.83% 
Xcore ∪ {gender, aos} 98.57% 75% 
Xcore ∪ {gender, aos, completeness} 100% 75% 

 
Next, we gradually add attribute to the core attributes set 

and repeat the above experiments. By adding “gender” to the 
core attribute set, the accuracy rates increase substantially on 
“train and test with the same set” and “10-fold cross-
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validation”. This result suggests that “gender” should belong 
to the core attribute set C. Thus, we obtain a new core set C′ 
= {level, duration of injury, age, gender}. 

Next, we continue to add the remaining attributes to the 
new core set C′ and repeat the experiments as above. The 
results show that the accuracy rates cannot be further 
improved. 

IV. DISCUSSION 
There are two purposes in this study. First of all, we 

demonstrate the feasibility of using machine-learning 
techniques to classify whether a given tilt and recline setting 
would be favorable for skin perfusion for individual 
wheelchair users with SCI. Specifically, we use ANNs to 
learn the classification function f. When using function f to 
classify existing data, it can classify all the data correctly 
(e.g., see row “Xcore ∪ {gender}” in Table II). However, with a 
small data set, overfitting is likely to happen. The commonly 
used approach to minimize overfitting impact is 10-fold 
cross-validation [11]. Our experimental results show that the 
highest accuracy rate with 10-fold cross-validation is 75% 
(e.g., see row “Xcore ∪ {gender}” in Table II), which is still 
satisfying. In comparison, the accuracy rate of the traditional 
method, i.e., the average data in each tilt and recline setting 
is used to perform classification, is only 59.38%. Therefore, 
it is desirable to use machine-learning techniques to study 
blood flow response to wheelchair tilt and recline usage. 

The second purpose of this study is to investigate methods 
to construct an intelligent model that contains relevant 
attributes to skin perfusion and is able to predict favorable 
wheelchair tilt and recline usage for individual wheelchair 
users with SCI. As a start point, we use a highly ranked 
attribute selection algorithm, namely, CFS [8], to obtain a 
core attributes set. Since attributes may interact with each 
other to take effect, the core attributes set may miss some 
relevant attributes. We gradually add the remaining 
attributes to the core set and see if the classification accuracy 
rates could be further improved. The experimental results 
show that adding “gender” to the core attribute set 
substantially improves the classification accuracy. 
Therefore, “gender” is put into the core attributes set. We 
continue to add the remaining attributes to the new core set, 
however, the accuracy rates cannot be further improved. 
Therefore, the current model includes attributes of “level of 
injury”, “duration of injury”, “age”, and “gender”, which 
will be validated by more participants in the subsequent 
study. 

V. CONCLUSION 
In summary, the use of machine-learning techniques is 

promising in building an intelligent model that considers the 
correlations among different factors. The function f learned 
by using ANN significantly outperforms traditional 
statistical approach in accurately classifying favorable 
wheelchair tilt and recline settings. 

Our long-term goal is to construct a comprehensive model 
that considers demographic, neurological, and medical 
factors that are relevant to pressure ulcers. Besides 
classifying whether a given tilt and recline setting will 
increase skin perfusion for a wheelchair user with SCI, the 
intelligent model will also predict (1) the optimal tilt and 
recline setting that increases skin perfusion the most; and (2) 
the optimal duration and frequency to perform tilt and 
recline to effectively reduce pressure ulcers risk. 

In addition, we will set up a Web site to make the 
intelligent model publicly available. People with SCI will 
simply input some information, such as age, gender, level, 
duration of injury, etc., then the system will provide 
suggestions on favorable/optimal tilt and recline settings for 
them. Therefore, our system will truly aid people with SCI 
to have a healthier tomorrow. 
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