
  

  

Abstract—The purpose of this study was to investigate the 
number of states present in the progression of a seizure-like 
event (SLE). Of particular interest is to determine if there are 
more than two clearly defined states, as this would suggest that 
there is a distinct state preceding an SLE. Whole-intact 
hippocampus from C57/BL mice was used to model 
epileptiform activity induced by the perfusion of a low 
Mg2+/high K+ solution while extracellular field potentials were 
recorded from CA3 pyramidal neurons. Hidden Markov 
models (HMM) were used to model the state transitions of the 
recorded SLEs by incorporating various features of the Hilbert 
transform into the training algorithm; specifically, 2- and 3-
state HMMs were explored. Although the 2-state model was 
able to distinguish between SLE and nonSLE behavior, it 
provided no improvements compared to visual inspection 
alone. However, the 3-state model was able to capture two 
distinct nonSLE states that visual inspection failed to 
discriminate. Moreover, by developing an HMM based system 
a priori knowledge of the state transitions was not required 
making this an ideal platform for seizure prediction algorithms. 

I. INTRODUCTION 
HE degree of synchronization within neuronal 

networks of the brain can be a strong indicator of its 
overall health. Periods of high and/or extended synchronized 
neuronal discharges, designated as seizures or ictal events, 
cause transient interruptions of the brain’s electrical 
activities [1]. These events may be spontaneous or triggered 
by any number of factors such as abnormal metabolic states 
(e.g., sleep deprivation, fever, etc.) or visual patterns [2]. 
Healthy brains respond by appropriately modifying the 
electrical responses whereas diseased brains (e.g., epileptic) 
may respond by transitioning into an ictal state. It is the 
nature of these transitions that is of particular interest when 
studying diseased brain dynamics. 

Seizure onset prediction has been on the forefront of 
epilepsy research for several decades [3]. Although most 
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patients are able to adequately control seizures through 
anticonvulsant medications, approximately 30% experience 
medically intractable epilepsy [4]. Thus, seizure prediction 
systems may provide more efficient and effective treatments. 
Prediction algorithms based on dynamic similarity [5], 
signal energy [6], largest Lyapunov exponent [7], and phase 
synchronization and cross correlation measures [8] have 
been developed. However, one of the difficulties with such 
algorithms is the dependence on comparing preictal data 
with baseline [9]. By definition this dependence incorporates 
bias into the system, as the time series being analyzed needs 
to be segmented prior to the analysis. All supervised 
learning algorithms are inherently biased in a similar 
manner. Thus, unsupervised learning would be the method 
of choice for an ideal seizure prediction system.  

On the most primitive level, the notion of predicting the 
onset of a transition into an ictal state suggests that there is a 
preictal state wherein the brain is progressing towards ictal 
behavior. This would further imply that there are, at least, 
three distinct states – namely, preictal, ictal, and postictal (or 
baseline) – involved in the progression of a seizure-like 
event (SLE). It would then follow that an ideal seizure 
prediction system would be able to identify these states in an 
unsupervised manner. 

The overarching aim of this work is to capture the 
dynamical states involved in epileptiform activity recorded 
from whole-intact hippocampal preparations. Extracellular 
field recordings were obtained from pyramidal neurons in 
the cornu ammonis region 3 (CA3) and analyzed offline by 
modeling them as Markov processes. Specifically, a hidden 
Markov model (HMM) based system is explored to 
determine if a two or three state model provides a more 
appropriate representation of SLE behavior. HMMs have 
been commonly used in speech recognition algorithms [10] 
but are also gaining prominence in brain state classification 
systems [11]. Such a system assumes that the underlying 
dynamical states are driving the observable changes 
recorded in the local field potentials and, more importantly, 
it does not require any a priori knowledge of the state 
progressions of the time series. Frequency ranges including 
delta (1–4 Hz), beta (15–40 Hz), and gamma (>40Hz) 
rhythms were incorporated into the system, which have been 
previously implicated in rodent epileptiform activity [12]. 
Features of the Hilbert transform – namely, amplitude, 
phase, and their respective derivatives – of the relevant 
frequency bands were used to construct the feature space 
training the HMMs.   
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II. MATERIALS AND METHODS 

A. Hippocampal Preparation 
Whole-intact hippocampal tissue was prepared from 

C57/BL (P10-14) mice in accordance with the animal care 
guidelines of the affiliated institutions. Animals were first 
anesthetized with halothane and decapitated. Once the brain 
was extracted the cerebellum was removed and the two 
hemispheres, separated along the sagittal plane, were 
submerged for 5 minutes in ice-cold (2-5oC), oxygenated 
(95% O2, 5% CO2) artificial cerebrospinal fluid (ACSF), 
which contained (in mM): 123 NaCl, 2.5 KCl, 1.5 
CaCl2•2H2O, 2 MgSO4•7H2O, 25 NaHCO3, 1.2 
NaH2PO4•H2O, and 25 glucose (pH 7.4). The septal region 
and the ventral extension of each hemisphere were cut in 
order to detach the hippocampus while preserving the 
subiculum and entorhinal cortex [13]. The disconnected 
whole hippocampi were then submerged in room 
temperature, oxygenated ACSF for at least 1 hour prior to 
data collection. 

B. Electrophysiological Recordings 
Recordings were obtained from the prepared tissue using 

an RC-26 open bath recording chamber (Warner 
Instruments). Fine pins were used to secure the tissue in the 
chamber with its concave, medial surface facing downward. 
A steady flow of warmed (33.5 ± 0.5oC), oxygenated (95% 
O2, 5% CO2) ACSF was perfused over the tissue at a rate of 
2–3 ml/min. To minimize oxygen evaporation, the surface 
solution was also oxygenated (95% O2, 5% CO2). To induce 
seizure-like activity a low-Mg2+/high-K+ ACSF solution was 
used, which differed slightly from the standard ACSF 
previously described – namely, by using 0.25 mM 
MgSO4•7H2O and 5 mM KCl instead of 2 mM and 2.5 mM, 
respectively. This in vitro model is often used to induce 
epileptiform activity similar to that observed in in vivo 
electrographic seizures [14]. Application of low-Mg2+/high-
K+ ACSF was implemented after at least 5 minutes of stable 
recording under the standard ACSF perfusion treatment. 
Continuous voltage recordings of the local network captured 
the transitions into SLEs for a maximum of 1 hour at which 
point standard ACSF was used as a washout. 

Infrared differential interference contrast was used with an 
Olympus BX51WI upright microscope (Olympus Optical 
Co.) to guide electrodes to individual pyramidal neurons in 
the CA3. This region has been implicated as the driver of 
intra-hippocampal activity [15] and thus was the region of 
interest for this study. An Axopatch 200B amplifier (Axon 
Instruments) was used for extracellular field recordings. 
Glass electrodes with 3–5 MΩ resistance were made from 
borosilicate capillary tubing (World Precision Instruments) 
using a Narishige PP-830 vertical puller and were filled with 
standard ACSF. Data was collected with Clampex 10.2 
software and analyzed off-line using MATLAB® and its 
publicly available HMM toolbox [16]. 

C. Hidden Markov Models 
A hidden Markov model (HMM) is a nonparametric 

statistical approach of representing a Markov process 
wherein the observable output is dependent on the 
unobservable (hence, hidden) states. Thus, the underlying 
assumption governing HMMs is this output dependence on 
the hidden dynamical states of the system; the reader is 
referred to [10] for a detailed discussion. Briefly, a Q–state 
HMM, which is in state qt at time t for 0 ≤ t ≤ T, is 
characterized by λ  = {π, A, B}. The initial state distribution 
is described by π = {π1, … , πQ} where πj = Pr(qo = j) for j = 
1, … , Q while the state transition matrix (A = {aij}, where 
aij = Pr(qt = j | qt-1 = i) ) describes the probability of 
transitioning from state qi to state qj for 1 ≤ i, j ≤ Q. The 
observed emission matrix (B = {bj (O)} where O is a K–
dimensional feature vector for j = 1, … , Q) describes the 
probability of observing the given output while being in the 
hidden state qj. The entries of λ  were initialized using the k-
means algorithm [17] and were iteratively estimated with the 
well-established expectation-maximization algorithm [18]. 
Each feature vector (O) was fit using an unsupervised 
mixture of Gaussians (MoG) where the multivariate 
Gaussian probability density function is defined as 
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This expression provides a measure of the distance between 
each feature vector O to the center of each Gaussian basis 
function m for 1 ≤ m ≤ M with mean µm and covariance Σm. 
As such, the emission probability is the sum of the weighted 
Gaussian probability densities over all the basis functions – 
namely, 

bj (O) = wjm!(Om,µ jm,! jm )
m=1

M
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where wjk, the mixture weights of the basis functions, sum to 
unity. 

As the name implies, there are two stages involved in the 
expectation-maximization algorithm. The expectation stage 
evaluates the ability of the current model parameters to 
recreate the observed data. Of particular interest is the 
marginal posterior distribution for each state. This measure 
provides the time evolution of each state and is defined by 
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where αt(i) and βt(i) are the joint probabilities of observing 
all data up to time t at state i and the conditional probability 
of all future data from time t+1 onwards at state i, 
respectively. These probabilities are given by 
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During the maximization stage the model parameters are 
updated accordingly and the model is reevaluated. This 
process is terminated once the difference between log-
likelihood (LL) values of successive iterations is below the 
predetermined threshold or when the number of iterations 
reaches the set maximum of 100. The LL provides a measure 
of the goodness-of-fit between the feature vector O and 
current model parameters and is defined by 

LL = log P O aij,wjm,µ jm,! jm( )( )      (5) 

Generally, LL convergence occurred within 30 iterations. 
The training data utilized in this study consisted of a 

single recording of approximately 840 s containing two 
separate SLEs, each approximately 180 s. This provided the 
optimal training condition by exposing the system to the 
critical state transitions multiple times and thus better 
enabled the dynamics of the transitions to be captured. The 
main question of this study was to determine if there are 
more than two hidden states involved in the transitions 
between SLE and nonSLE behavior. Thus, the number of 
hidden states (Q) was varied; specifically, Q = 2 and Q = 3 
were explored (henceforth referred to as the 2-state and 3-
state model, respectively). Moreover, to avoid overfitting the 
number of basis functions was restricted to M = 2. Pilot 
studies also suggested that increasing this to M = 3 for either 
the 2-state or 3-state model yielded no significant difference. 

III. EXPERIMENTAL RESULTS 

A. Feature Space Optimization 
 In constructing the feature space, an analytic signal was 

first computed by applying the Hilbert transform to the 
relevant frequency bands of the recorded field potentials; the 
reader is referred to [19] for a detailed discussion of the 
Hilbert transform. This allowed for the extraction of four 
distinct features – namely, amplitude, phase, and their 
respective first derivatives. The derivatives were obtained by 
applying a Gaussian filter to the desired signals. 
Specifically, this involved convolving each signal with the 
derivative of a Gaussian distribution. This is advantageous 
because it minimizes the underlying noise artifacts that are 
often amplified with traditional derivative methods. The 
specific frequency bands that were used were (in Hz):  1–4, 
15–40, 40–58, 85–95, 95–130, and 130–155. Thus, the 
feature space incorporated both the delta (1–4 Hz), gamma 
(40–100 Hz), and super gamma (>100Hz) frequency bands 
which have been previously implicated in rodent 
epileptiform activity [12]. The division of the frequency 
bands was such that a single rhythm was captured in each 
band based on the fast Fourier transform.  

B. Assessing Model Fit 
In order to evaluate the ability of each model to capture 

the underlying dynamical states during the transition 
between SLE and nonSLE behavior, the marginal posterior 
distribution, as described by (3), of each state was computed 
for the respective models (Fig. 1). The 2-state model (Fig. 

1(b)) was able to appropriately separate SLE and nonSLE 
behavior in a manner comparable to visual inspection of the 
local field potentials (Fig. 1(a)). These two regions in the 
local field potentials are noticeably different. Interestingly, 
the 3-state model (Fig. 1(c)) was able to distinguish between 
two separate nonSLE regions – namely, before and after the 
SLE itself. This is indicative of distinct dynamics in the 
region preceding the SLE compared to the one that follows, 
which visual inspection alone fails to recognize. 

Moreover, the SLE state identified by both models 
(indicated by the vertical lines in Fig. 1(a)) differs in length. 
The 2-state model appears to transition into the SLE state 
later and transition out of this state earlier than its 3-state 
counterpart thus making the duration of the SLE state 
noticeably shorter. The 3-state model also appears to have an 

Fig. 1.  SLE state classification via Markov modeling. (a) Extracellular 
field potentials were recorded from a pyramidal neuron in the CA3. A (b) 
2-state and (c) 3-state HMM were explored. The marginal posterior 
distribution (γQ(i)) was computed for each state of the respective models 
where Q denotes the total number of model states and i denotes each 
individual state such that 1≤ i ≤Q. An expectation-maximization algorithm 
was used for training on a data set of ~840 s consisting of two separate 
SLEs, each ~180 s. The 2-state model was able to distinguish between SLE 
and nonSLE behavior. This, however, is not an improvement to visual 
inspection alone. Conversely, the 3-state model was able to capture two 
separate nonSLE states, one preceding the SLE (i.e., “preSLE”) and the 
other immediately following (i.e., “postSLE”). Vertical solid and dashed 
lines in (a) indicate the SLE region identified by the 2- and 3-state model, 
respectively. 
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initial spike into the SLE state around 160 s, which is not 
present in the 2-state model. Both models, however, do 
exhibit minor fluctuations in the center of the SLE state as 
well as around the transitions. 

IV. DISCUSSION 
The advantage of using an HMM based system is in not 

requiring any a priori knowledge of when a state transition 
occurs. This eliminates any subjectivity in identifying 
particular states as well as provides a quantitative measure of 
how features differ between states.  

Fig. 1(c) indicates that there is a significant difference 
between the dynamics of the region preceding an SLE 
compared to the one that follows afterward. Interestingly, 
the entrance into the SLE state occurs earlier in the 3-state 
model (Δt = ~30 s). There is also an earlier spike in the SLE 
state around 160 s. These observations suggest that there 
may be a region between the preSLE and SLE states that has 
not been fully captured in the model. Similarly, the transition 
out of the SLE state occurs earlier in the 2-state model (Δt = 
~15 s). This again suggests that there may be an additional 
state between the SLE and postSLE states that was 
integrated into the existing model states. Thus, a natural 
extension of this work would be to incorporate more than 
three states into the model.  

The minor fluctuations observed near the center of the 
SLE state in both models and around the state transitions 
suggest that feature space still has room for improvement. 
Perhaps by incorporating higher-order derivatives of the 
amplitude and phase these fluctuations would be eliminated. 

One should note that if there were redundancy between 
states then there would be significant overlap between these 
states. In other words, the system would simultaneously be 
in two states because the feature space did not capture any 
significant differences to distinguish between them. 
Moreover, if the feature space were not able to capture the 
true dynamics of the time series then the confusion of the 
system would also be manifest in multiple transitions into 
and out of the states within a relatively short time period. 
Similarly, if too many states were incorporated into the 
system then the superfluous states would exhibit a near zero 
marginal posterior distribution for the entire time series. 
Thus the ability of the 3-state model to capture an additional 
distinct state compared to its 2-state counterpart is not 
merely the result of increasing the number of hidden states.  

V. CONCLUSION 
This study investigated the potential of 2- and 3-state 

Markov models, specifically first-order HMMs, to capture 
the dynamics involved in the transitions between SLE and 
nonSLE behavior. Although the 2-state model was able to 
distinguish between SLE and nonSLE behavior, it did not 
improve classification when compared to visual inspection 
alone. The 3-state model, however, was able to capture a 
distinct preSLE and postSLE state in addition to the SLE 
state common to both models. The variability in the length 

of the SLE state suggests that there may be additional states 
that were not distinctly captured but were rather integrated 
into the existing model states. This further suggests that 
incorporating more hidden states may yield a more precise 
classification of the states involved in the transitions 
between SLE and nonSLE behavior. 

The practicality of an HMM based system lies in the 
unsupervised manner by which the states are identified. 
Eliminating the dependence on a priori knowledge of the 
states involved is a great benefit when it comes to prediction 
of seizure onset.  
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