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Abstract—ArmAssist is a wireless robot for post stroke upper
limb rehabilitation. Knowing the position of the arm is essential
for any rehabilitation device. In this paper, we describe a method
based on an artificial landmark navigation system. The navigation
system uses three optical mouse sensors. This enables the building
of a cheap but reliable position sensor. Two of the sensors are
the data source for odometry calculations, and the third optical
mouse sensor takes very low resolution pictures of a custom
designed mat. These pictures are processed by an optical symbol
recognition algorithm which will estimate the orientation of the
robot and recognize the landmarks placed on the mat. The
data fusion strategy is described to detect the misclassifications
of the landmarks in order to fuse only reliable information.
The orientation given by the optical symbol recognition (OSR)
algorithm is used to improve significantly the odometry and the
recognition of the landmarks is used to reference the odometry
to a absolute coordinate system. The system was tested using a
3D motion capture system. With the actual mat configuration,
in a field of motion of 710 x 450 mm, the maximum error in
position estimation was 49.61 mm with an average error of 36.70
± 22.50 mm. The average test duration was 36.5 seconds and
the average path length was 4173 mm.

I. INTRODUCTION

ArmAssist is a wireless robot for after stroke upper limb
rehabilitation [1]. This project aims at the development of
a inexpensive, portable, large-workspace, modular, mobile
robotic system for upper-limb functional rehabilitation. The
system implements task-oriented therapy, combining motor
recovery and functional recovery. The robot is attached to
the patient forearm, and the patient will perform pre-defined
exercises moving it on a table. The device will be used for
the treatment of gravity induced disturbance of coordination
between shoulder abduction and elbow flexion. Patients using
this device will be able to start the rehabilitation program in
the care centers and to continue it at home. The system enables
the assessment of patient residual motor/functional ability,
implement the physical means for the therapy, and finally
assess the results of the therapy. Two important requirements
of the robot are: i) Accurate measurement of the robot in a flat
surface and ii) Technologically easy and cheap to implement.

In our device, we wanted to avoid installing any accessory
electronic subsystem (beacons, IR landmarks, webcams, ex-
ternal cameras, etc) which lead to odometry as the chosen
positioning technique. Odometry is widely used method to
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Fig. 1: ArmAssist device

estimate both position and orientation in mobile robots. The
core idea is the integration of incremental motion information
over time [2][3]. The motion information is typically data from
incremental wheel encoders in case of wheeled robots.

Many techniques have been proposed in order to reduce
errors [4]. Odometry is considered an accurate short term
position estimation method, but as errors accumulate, the
uncertainty of position estimation inevitably increases over
time. The artificial landmark recognition technique uses the
information of location of distinctive landmarks at known
locations to obtain position information.

The robot’s positioning system is equipped with three
optical mouse sensors. Two mice provide information of their
displacement in two dimensions to the odometry. The third
mouse is used as a CCD camera to obtain pictures of the
surface in order to extract and recognize visual landmarks of
the mat placed below the robot.

The idea of using optical mouse sensors for dead-reckoning
for mobile robots is not new [5] [6] [7] [8] [9]. The optical
mouse is a very low-cost sensor and has the advantage that
the measured displacement is independent from the kinematics
of the robot because the optical sensor uses external natural
microscopic ground landmarks to obtain the effective relative
displacement [10].

The device will be used mostly in game based rehabilitation.
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Therefore the position estimation should be good enough in
order not to intefear the visionproprioception interactions and
also provide sufficient quantitative feedback to the therapists
for monitoring therapy progress. The precission needed for
game based rehabilitation will be further evaluated during the
one year patient trials currently in progress.

II. METHOD

This method comprises optical mouse based odometry, and
a 3rd mouse used as CCD camera with the algorithm to
extract and recognize the landmarks on a custom mat and
the corrective strategy to detect the misclassifications of the
landmarks and fusing of the odometry calculations with the
absolute position data.

A. Odometry calculation

Odometry calculation consists in solving the differential
drive kinematics for a two wheel robot. This has been pre-
viously solved also in non-holonomic wheeled robots with
differential steering systems [3]. In our case, the two wheel
encoder information has been substituted by two optical mice
sensors [10]. The two mice are placed parallel and in a known
distance from each other. Mice data are recorded at 125Hz. At
this sampling rate, the mice move very little (8 mm at highest
speed). It is considered as normal working speed (0.1m/s up to
0.05m/s at slow working speed). This would lead to 0.4 mm
changes per reading. This can produce very strong changes
in estimated trajectory direction. Therefore a new position is
estimated every 40 ms in order to avoid too abrupt changes in
estimated trajectory direction.

B. Absolute position estimation

We propose an absolute position estimation method, to
determine, in discrete time stamps, the position of the sensor
within a custom mat using artificial landmark recognition.

1) Custom printed mat design: The mat spans over the
whole field of motion of the arm and contains 16 cells each
of which is labeled with a unique landmark.

2) Optical symbol recognition algorithm: The Avago
Technologies ADNS-3080 optical mouse sensor has a pro-
grammable frame rate over 6400 frames per second which
enables high shutter speeds.

The algorithm is divided in the following steps.
– Flat field correction.
– Normalization
– Angle extraction
– Bilinear image rotation and resampling
– Landmark extraction and recognition
– Cell position identification

– Flat-field correction: Uneven illumination, the LED
orientation, dirt/dust on lenses and other factors can result
in a poor quality image. The flat field image should,
ideally, be a field of view of the mat without any symbols
in it.

– Normalization: The flat-field corrected image is then
normalized to numbers between 10 (nearly black) and

240 (nearly white). This is done so in order NOT to have
pixels with value zero, as the zero value is reserved for
not computed for the rotation process.

– Angle extraction: The landmarks were designed in sucha
a way, that when repeated, the draw a grid of continuous
black lines in the captured frame. The algorithm to
detects these lines is an extension of the Hough transform
[11][12]. Instead of searching and voting for a single line
this algorithm searches for multiple lines. The main lines
are parallel to each other in a known distance from each
other. If the 10 most voted candidate’s result are withing a
maximum error of 10 degrees, the most voted solution is
accepted and the pictures is used for landmark detection.
Otherwise, the image is rejected.

– Bilinear image rotation and resampling: The final goal
is to rotate around the center of the image for landmark
extraction and recognition. As the footprint of the image
remains constant, the size (in pixels) of the landmark is
known.

– Landmark extraction and recognition: It is necessary
to re-shift the image into the correct position. This is done
using the information landmark design. All landmarks
start with a black column. This is used to determine which
column is the first one. Similarly the row re-shifting is
done. Once the landmark picture is re-shifted is easy to
locate the areas where the symbol bits are and classify
them as black or white.

– Cell position identification: The cell position in the mat
is known using a lookup table.

C. Odometry and absolute position correction fusing strategy

Mice work better in less homogenius surfaces (e.g. porous
surfaces, uneven surfaces) as the chip is able to detect more
features of the surface. The Avago Technologies ADNS-
3080 optical mice provide a parameter of the surface quality
(SQUAL). Its average value on white paper is 75 (in optimal
hight adjustment) and the maximum value is 169 [13]. Due
to the mat design, the number of features with which the
mouse chip estimates its motion is very high (SQUAL =
131.32±6.84).

There are many strategies to correct systematic odometry
errors [14] based on redundancy of the mice data. As the
mice are solidly attached to each other, the readings of the
mice along the axis that joins the centers of the two sensors
should be equal. This redundancy can be used to change some
parameters of the odometry calculation algorithm for better
odometry estimation [7].

On the first version of the 3 optical mouse sensor based
positioning system, non systematic odometry error correction
strategy had been implemented to fine tune the paramters. The
angle estimation errors are the core source of position estima-
tion error calculated by odometry. The odometry correction we
present focuses on orientation error correction. The method
utilizes redundant sources of orientation changes.

The OSR algorithm does not always return a value (section
II-B2), thus the absolute orientation information θA has an
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asynchronous sampling rate. First, the relative orientation val-
ues sampled at 25Hz (θR(n)) are subsampled to get the infor-
mation in the OSR data time slots (θR(n̂)). Once this is done,
the consistency between the absolute orientation θA(n̂) and
the relative orientation θR(n̂) is checked. If the information
of the relative orientation variation matches, within boundaries
(Thθ), with the changes of the absolute orientation variation
for the last four valid images (1), the absolute orientation
information is defined as compliant, and used to determine
the actual orientation error as shown in (2).

[|∆θR(n̂− i)−∆θA(n̂− i)|]i=0,1,2,3 < Thθ (1)

ε(n̂) =

4∑
i=1

θR(n̂− i)−
4∑

i=1

θA(n̂− i)

4
(2)

The same method can be used for position data consistency
checking and correction if extended to two dimensions. First,
the relative position values PR(n) are subsampled to get the
information in the OSR data time slots PR(n̂). The positions
given by the OSR algorithm are stored in the PA(n̂) vector.

In case of perfect odometry calculations, there is a displace-
ment vector D that fullfills the condition that every point of
the PR(n̂) fits into the PA(n̂) vector with an error below the
half of the cell width (for the X axis εX ) (3) and below the
half of the cell height (for the Y axis εX ) (4). In reallity this
is not true and the optimal value of D is calculated in order
to make the maximum number of points fullfill the condition.
The vector E is calculated every time that new information of
OSR is provided.

XA(n̂)− εX ≤ XR(n̂) +Dx ≤ XA(n̂) + εX (3)

YA(n̂)− εY ≤ YR(n̂) +Dy ≤ YA(n̂) + εY (4)

III. RESULTS

A. Optical mouse reliability

In the characterization of the optical mouse behavior,
straight trajectories were carried out manually in slow, medium
and fast movements. As the robot aims after stroke upper
limb rehabilitation the maximum working speed is estimated
at 1m/s. The tests were carried out in 0.1 m/s, 0.5 m/s and
1m/s speeds.

TABLE I: Spacial Resolution at Different Speeds

Speed [m/s] CPI mouse # 1 CPI mouse # 2
0.1 1435.6± 14.8 1251.2± 21.8
0.5 1452.1± 31.3 1185.6± 47.4
1 1501.7± 22.3 1229.6± 28.2

B. Orientation correction

The orientation detection algorithm with OSR has been
tested. The images of a database of 100 images corresponding
to a random trajectory of 30 seconds were used to determine

the accuracy of the OSR orientation data. For each of the
images an optimal solution was given and compared with the
output of the OSR algorintm. The error in absolute value of
the results of the OSR algorithm after the consistency check
was 2.81 ± 1.57 degrees of an angle (maximum was 5.18
and minimum was 0.04 [deg]). The number of frames with
processed angle data was 90 and 70 frames were consistent in
relative and absolute orientation changes.

As the most important corrective action concerns orientation
correction, a test has been carried out to quantify the odometry
errors due to orientation drift. The robot was manually moved
following a square shaped trajectory finishing at the starting
point. The following parameters have been measured: Test
Duration (TD), length of the trajectory with orientation cor-
rection (OC) and the trajectory without orientation correction
(NOC), mean root square difference between the positions
of the trajectory with and without orientation corrections
(MRSD), the total length of the trajectories (Length), the
final points distance to the initial point (Distance to SP), and
the final point’s estimation improvement due to orientation
correction factor (Improvement) (table II). All values are given
in millimeters.

TABLE II: Orientation Correction Effect Test Results

Test # Length MRSD Distance to SP Improvement
OC NOC OC NOC

1 1226 1226 12.42 81.14 168.80 87.66
2 1225 1225 36.16 89.44 191.57 102.13
3 1237 1237 40.31 40.07 178.64 138.56
4 1048 1232 24.70 180.38 291.90 111.52
5 1121 1364 28.84 145.80 267.01 121.20
6 1141 1212 33.16 114.50 217.65 103.16
7 1238 1238 30.02 45.44 161.03 115.59
8 1213 1213 32.03 52.50 160.07 107.57
9 1213 1213 38.86 39.38 167.91 128.53

10 1216 1288 42.16 44.51 183.28 138.76
Mean 1187.8 1244.8 31.9 83.3 198.8 115.5
SD 63.3 47.4 8.7 49.5 46.1 16.5

C. Position correction

The position estimation of the OSR algorithm was tested a
3D motion capture system. The mat had a 720 x 450 mm field
of motion divided into 16 cells of 480 x 112.5 mm. The test
consisted in moving the device manually thoughout the whold
mat field of motion randomly during aproximatelly 30s. The
test was repeated 5 times. The motion was captured at a rate
of 100 Hz and the data was post-processed in order to obtain
the devices angle and the trayectory of the center point.

This data was compared with the presented absolute position
calculation estimation method. The maximum error in position
estimation was 49.61 mm with an average error of 36.70 ±
22.50 mm. The average test duration was 36.5 seconds and
the average path length was 4173 mm.

As an example the trayectory of the test#4 is presented in
the following figure.
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Fig. 2: Position and orientation differences

D. Position initialization

The algorithm is reseted when the mice are loose contact
with the surface. This is detected very acuratelly by mon-
itoring the surface quality (SQUAL) paramter provided by
the mice controller. All the parameters are reseted to their
initial values, and the position is set as unknown. Inmediatelly
after initiallization (at turn-on or after lift up) the user hast
to move the device slightly. If the mice detect movement, the
acquired images are processed, and after four valid images
the first position, refered to the absolute coordinate system is
calculated. This procces takes about 1 second to complete.

E. Computational power

The algorithm has not been jet opticed in order to be
able to run on an on-board microprocessor. Nevertheless, it
has been running without perceptive delay in a Dell Latitude
D630, 2.2GHz Intel Core2 Duo, 2GB RAM. This makes the
device completely portable, as no high end PC is needed to
run the algorithm. Once the algorithm is ready, it could be
programmed into a Field Programmable Gate Array (FPGA).

IV. CONCLUSION

The study showed similar behavior in slow, medium and fast
movements in spacial resolution but quite different from one
sensor to another. However, the analysis concluded that even a
very cheap optical mouse sensors can be sufficiently accurate,
precise and reliable to perform a optical mouse sensor based
short term odometry for the ArmAssist robot.

Concerning OSR performance in orientation detection, the
modified Hough transform correction strategy, and consistency
check showed very good results. The OSR orientation is very
reliable as 100 % of the results after the concistency check
rule have an error below 5 degrees. Additionally, if this data
is used to correct the odometry, the position error (in mm

m )
decreases significanly by 58.10 %.

Regarding the OSR performance in landmark recognition
the accuracy is over 95 % in a 16 group classifier. The raw
images have very poor quality and contrast. On the other hand
the consistency check rule improves the accuracy to over 99.5
%, but the number of pictures that fullfill the consistency
check rule is 72 %, so the time between two absolute position

corrections could be rather large (an average of 2.4 corrections
per second).

We can conclude that even with very few corrective strate-
gies have been implemented until now, the proposed navi-
gation system can be used in desktop mobile robots where
the range of motion of the robot is limited. This method
enables the construction of a cheap global positioning system
where the main drawback of unbounded error accumulation
of odometry is solved.

Future work will target the design of systematic error
correction strategies. As the system has sources of redundant
position information, strategies for odometry parameter tun-
ing can be implemented. The modification of the odometry
parameters will reduce the drift and therefore the overal error.
The aim is to increase the accuracy of the system into a level
that is satisfactory to cualitative training at home.
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