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Abstract— In this paper, a planning strategy for robotics-
assisted interventions is formulated in terms of uncertainty at
the task level. The proposed formulation attempts to increase
the chance of success by maximizing robustness with respect to
the task uncertainty. It is assumed that the instrument tip pose
has a Gaussian distribution in the vicinity of the desired task
frame, and the planner is formulated as a chance-constrained
programming problem in terms of the chance of collisions
and joint limit violations based on the inverse kinematics
of the arms. The proposed objective function addresses the
robustness as well as the performance of the robotic arms. As
an illustrative example, the planning strategy is implemented
for LIMA harvesting in minimally invasive coronary artery
bypass with the da Vinci robot.

I. INTRODUCTION

In the last few years, emerging technologies have in-

creased the feasibility and popularity of robotics-assisted

surgical procedures. Intraoperative complexities suggest that

the chance of success in robotics-assisted interventions (RAI)

can be improved by preoperative planning. Issues such as

intraoperative collisions, mechanical joint limits and sin-

gularities can reduce the success rate of RAI. In order

to adapt to anatomical differences, any planning strategy

has to take into account patient-specific preoperative data.

Normally, such data can be acquired from imaging modalities

such as Computed Tomography (CT) or Magnetic Resonance

Imaging (MRI). To complicate matters, the intraoperative

geometry of the patient can significantly deviate from what

is expected based on preoperative data. Tissue deformations

due to tool/tissue interactions, physiological motions, and

altered geometry due to chest insufflation and lung collapse

can introduce inaccuracies in the model acquired from pre-

operative data. Additionally, one should consider the inherent

uncertainty in surgical tasks. In other words, even assuming

that there is no uncertainty in the desired task frame (which

is normally attached to an anatomical feature), the task

implementation is not accurately known.
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The formulation proposed in this paper attempts to address

uncertainty at the task level. As a matter of fact, it is

possible to treat the contributions of the above sources

of uncertainty as a single entity represented by the task

uncertainty. The proposed framework attempts to find an

optimum plan that maximizes the robot performance with

the maximum tolerance with respect to the task uncertainty.

The tolerance is defined in terms of collision and joint limit

avoidance using the robot inverse kinematics. The planner

is formulated as a chance-constrained programming problem

and an efficient sampling-based technique for solving the

problem is proposed.

The paper is organized as follows: In Section II a brief

literature review is provided. The problem formulation is

presented in Section III followed by the results of a case

study in Section IV, and concluding remarks are given in

Section V.

II. RELATED WORK

A number of studies on preoperative planning of RAI have

been reported in the literature. The design of an interactive

3D virtual environment for assisting the surgeon in assessing

port locations on the patient’s chest wall was reported in [1].

A planning strategy, formulated as an optimization problem

for robotics-assisted minimally invasive cardiac surgery with

the da Vinci robot and based on preoperative CT images was

reported in [2]. This work addressed robot requirements such

as visibility, dexterity and collision avoidance. Other plan-

ning strategies based on the patient’s preoperative data for

robotics-assisted surgery were reported in [3]–[5]. However,

uncertainty was not explicitly addressed in any of the above

studies. In [6], a deterministic approach for preoperative

planning under geometric uncertainty was proposed. The

problem was formulated as a semi-infinite programming

problem that only considered uncertainty in the position of

the wrist and was relatively computationally demanding. An

integrated intraoperative planning and control strategy for

the DLR MIRO system was reported in [7] that can handle

intraoperative geometric uncertainty. While interesting, it

must be noted that the robots that are currently used for

RAI do not provide such functionality for safety reasons.

III. PROBLEM FORMULATION

Every surgical procedure can be expressed in terms of

several surgical tasks that can be represented by a number

of task frames inside the surgical cavity. Normally, these task

frames can be fixed to certain anatomical features, and there-

fore surgical tasks can be uniquely described with respect
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to the patient’s anatomy. While the correlation between the

task and the position of a specific surgical feature is easily

understood, the link between the instrument orientation and

the target may not be as obvious. However, a task can only

be uniquely expressed with a position and an orientation.

In practice, surgical gestures (subtasks) are subject to

spatio-temporal uncertainties. For different surgeons with

different levels of skill and experience, the uncertainty can

become more significant. The main objective of this planner

is to find a plan that can maximize the tolerable motion

uncertainty. In other words, this paper attempts to determine

what is the maximum uncertainty for which the chance of

collisions and joint limit violation remains sufficiently small.

RAI usually require three arms, including two arms for

carrying the right and left instruments, as well as one arm

for carrying the endoscope. Let xr ∈ℝ6 and xl ∈ℝ6 be the 6D

pose of the right and left instrument tips, respectively. In this

paper it is assumed that the desired task frames for the right

and left instruments are given as x̂r ∈ℝ6 and x̂l ∈ℝ6, and the

pose of the instruments in the vicinity of the task frames is

represented by Gaussian distributions xr ∼N (x̂r,Qx,r) and

xl ∼N (x̂l,Qx,l).
In order to increase the chance of success for completion

of a given surgical task, the robustness of the plan with

respect to the uncertainty in the task has to be maximized. In

this paper, the proposed planner attempts to find an optimal

plan that has the minimum susceptibility with respect to the

lack of information about the task. With a gesture modeled

by a Gaussian distribution, this is equivalent to maximizing

a norm of the covariance of the task. Equivalently, this can

be accomplished by minimizing a norm of the inverse of the

covariance matrix, known as the information matrix.

A. Objective Function

While it is desired that the robustness of the plan is maxi-

mized, the task performance must also be taken into account.

Therefore, the objective of this planner has to be articulated

in terms of two criteria: robustness and performance. As

mentioned in the previous section, robustness with respect

to task uncertainty can be maximized by minimizing a norm

of the information matrix. In practice, for a given task and

in the vicinity of a task frame, the endoscope remains still;

therefore, henceforth the pose of the endoscope is treated as

a deterministic variable.

Let a procedure be represented with N discrete task

frames represented by xr(k)∼N (x̂r(k),Qx,r(k)) and xl(k)∼
N (x̂l(k),Qx,l(k)) for k = 1, ..,N. The robustness criterion

can be expressed as:

min
Π

ΣN
k=1

(

log(∣Qx,r(k)∣−1)+ log(∣Qx,l(k)∣−1)
)

, (1)

where ∣ ⋅ ∣ is the matrix determinant operator, log(∣Qx∣) is the

Shannon entropy and Π is the vector of planning parameters.

In order to address the task performance, we propose a

new measure. This measure has physical interpretations and

naturally fits into the multi-criteria objective function. Given

the task frames with Gaussian distributions, assume that the

propagated distribution of the joint vectors can be approx-

imated by Gaussian distributions qr(k)∼N (q̂r(k),Qq,r(k))
and ql(k) ∼ N (q̂l(k),Qq,l(k)) where qr ∈ ℝ6 and ql ∈ ℝ6

are the right and left instrument arm joint vectors. Note that

these distributions depend upon the configuration of the arms

as well as the distribution of the task frames. In general, it is

desired that for a given displacement in the pose of the end

effector, the joint displacement is minimized. This can be

expressed in terms of the ratio of the joint covariance norm

to the pose covariance norm as:

min
Π

1

N
ΣN

k=1

(

log

( ∣Qq,r(k)∣
∣Qx,r(k)∣

)

+ log

( ∣Qq,l(k)∣
∣Qx,l(k)∣

))

, (2)

and the resulting multi-criteria objective function can be

rendered as:

min
Π

(

1
N

ΣN
k=1

(

log(∣Qx,r(k)∣−1)+ log(∣Qx,l(k)∣−1)
)

1
N

ΣN
k=1

(

log
(

∣Qq,r(k)∣
∣Qx,r(k)∣

)

+ log
( ∣Qq,l(k)∣
∣Qx,l(k)∣

))

)

. (3)

B. Constraints

Due to the stochasticity of the task, it is reasonable to

articulate the constraints probabilistically. In order to ensure

that the chance of collisions and joint limit violations will

not exceed a small threshold, the following constraints have

to be considered:

P(x̃(k) ∈ ℂfree∣Π)> 1− ε for k = 1, ...,N, (4)

P(qr(k) ∈ℚvalid,r∣Π)> 1− ε for k = 1, ...,N, (5)

P(ql(k) ∈ℚvalid,l∣Π)> 1− ε for k = 1, ...,N, (6)

qe(k) ∈ℚvalid,e for k = 1, ...,N, (7)

where qe ∈ℝ4 is the endoscope arm joint vector, 0 < ε ≪ 1,

x̃(k) =

⎛

⎝

xr(k)
xl(k)
xe(k)

⎞

⎠ is the augmented vector of the poses,

ℂfree is the collision-free subset of the Cartesian space that

can be defined in terms of the minimum distances between

the arm links, d, i.e., ℂfree = {x̃∣d > 0}, ℚvalid = {q∣q < q <

q̄} is the valid subset of the joint space determined by the

joint limits, and P(⋅) is the probability operator.

In fact, it is desired to express the above constraints as

functions of the pose vectors. The collision-free subset of

the Cartesian space can be described as ℂfree = {x̃∣g(x̃)> 0}
where d = g(x̃), g : ℝ16 → ℝ56 (see [6] for the geometric

modeling of the da Vinci arms).

Additionally, the valid subset of the joint space can be

described in terms of the pose of the end effector, i.e.,

ℚvalid = {q∣q < h(x) < q̄} where q = h(x) with hr : ℝ6 →
ℝ6, hl : ℝ6 → ℝ6 and he : ℝ4 → ℝ4 represent the inverse

kinematic mappings for the right, left and the endoscope

arms, respectively.

C. Chance-Constrained Programming Problem

A natural way of solving the above constrained opti-

mization problem is the use of a probabilistic sampling

method, which is a computationally expensive approach.

Alternatively, the chance constraints can be approximated

and replaced by a set of deterministic constraints. The latter
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method requires that the distributions (or at least the first

two moments) of the constraints are known. Nevertheless,

the constraints are generally nonlinear functions of the tip

pose and in general their distributions are unknown and

usually non-Gaussian. A trivial workaround is a local linear

approximation of the constraint functions and estimations of

the mean and variance of the constraints using the constraint

function Jacobian. However, this method usually fails to

reveal the true statistical properties of the constraint when

the function is highly nonlinear [8]. Furthermore, an analytic

expression of the Jacobian of the constraint function may not

be known, and the numerical calculation of the Jacobian of

the constraints may be computationally demanding.

As an alternative approach, the unscented transformation,

proposed by [8] is employed for estimating the statistics

of the constraints by fitting a Gaussian distribution on the

transformed samples. Consider a nonlinear mapping of the

stochastic variable x with a Gaussian distribution given as

y = f(x) where f : ℝm → ℝn. Assume that a set of Sigma

points are selected as X = {x̂, x̂± [
√

αQx]i} for i = 1, ...,m

where α is a scalar, and [⋅]i represents the ith column of the

argument. The mean and covariance of y can be estimated

as:

ŷ = Σ2m
i=0WiYi, (8)

Qy = Σ2m
i=0Wi(Yi− ŷ)(Yi− ŷ)′, (9)

where Yi = f(Xi) and Wi are scalar weights that are selected

such that the statistics of the Sigma points and x are identical.

The interpretation of this transformation is that instead of

propagating the mean and covariance of x, the Sigma points

are propagated and the resulting mean and covariance are

estimated by fitting a Gaussian distribution to the propagated

points.

Once the means and the covariance matrices of the con-

straints are estimated, the chance constraints can be reduced

to deterministic constraints. For ε = 0.02, the constraints (4)–

(7) can be given as:

2
(

diag(Qd(k))
) 1

2
< d̂(k), (10)

∣

∣

∣

∣

q̂r(k)−
q̄r +qr

2

∣

∣

∣

∣

+2
(

diag(Qq,r(k))
) 1

2
<

q̄r−qr

2
, (11)

∣

∣

∣

∣

q̂l(k)−
q̄l +ql

2

∣

∣

∣

∣

+2
(

diag(Qq,l(k))
) 1

2
<

q̄l−ql

2
, (12)

∣

∣

∣

∣

qe(k)−
q̄e +q

e

2

∣

∣

∣

∣

<
q̄e−qe

2
, (13)

for k = 1, ...,N, where d∼N (d̂,Qd(k)) along with the joint

distributions are estimated by (8) and (9).

Note that in order to ensure task feasibility, additional

constraints have to be taken into account. For instance, in

order to ensure that the targets are reachable, the approach

angles of the instruments must make an acute angle with

the normal vector at the site. Finally, the resulting problem

is rendered as an ordinary nonlinear programming problem

with the objective function given in (3) and subject to the

LIMA

Fig. 1. The left internal mammary artery is located on the chest wall close
to the sternum, extended from the first rib to the sixth rib.

constraints (10)–(13) along with the additional deterministic

constraints.

In the following section, the efficacy of the proposed

formulation for preoperative planning of RAI is demonstrated

through an illustrative example.

IV. A CASE STUDY

The optimal placement of the da Vinci robotic arms for

maximizing the chance of success when harvesting the Left

Internal Mammary Artery (LIMA) in minimally invasive

coronary artery bypass is considered. In order to provide

an alternative blood supply for the blocked coronary artery

irrigating the myocardium, the LIMA is taken down from

the chest wall and is sutured to the artery on the heart

surface. The LIMA is situated on the chest wall close to the

sternum and usually extends from the first rib to the sixth rib

(see Fig. 1). Therefore, harvesting the LIMA requires high

maneuverability over a wide range of space inside the chest

cavity. The maneuverability can be diminished by lower wrist

dexterity, extracorporeal obstacles and joint limits. In order to

increase the chance of success, it is essential that uncertainty

at the task level is taken into account.

The location of the access ports on the rib cage, as well as

the relative orientation of the slave arms with respect to the

patient’s body are incorporated into the vector of planning

parameters, Π. Given the preoperative images of a patient,

the location of the LIMA on the sternum can be accurately

identified (see Fig. 1).

From the complexity point of view, LIMA harvesting is

a relatively simple task and can be easily represented by

a minimal number of task frames. The desired task frame

for harvesting can be empirically determined by in vivo

observation of the tool gestures, or more accurately, can

be determined by statistical analysis of the observed tool

gestures. The task consists of pulling the tissue with the left

instrument while cutting the tissue along the artery using the

electrocautery on the other instrument [9]. For simplicity,

a diagonal constant covariance matrix is assumed for both

arms, i.e., Qx,r = Qx,l =

(

σ2
p I 0

0 σ2
φ I

)

, where σ2
p and σ2

φ

are the position and orientation variances, respectively.

The constrained nonlinear programming problem was

solved using fmincon in MATLAB, and the results are

illustrated in Figs. 2 and 3. Fig. 2 shows the da Vinci arms
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Fig. 2. The da Vinci arms while reaching the task frames for LIMA har-
vesting; the arms (modeled by geometric primitives for collision detection)
are placed as recommended by the planner.

Fig. 3. The origin of the admissible task frames generated in a Monte
Carlo simulation for LIMA harvesting task.

as they reach the LIMA for harvesting, while the arms are

posed as suggested by the planner when the right, left and the

endoscope ports are placed in the 3rd, 6th and 5th intercostal

spaces on the patient’s rib cage.

The actual reliability achieved with the proposed plan Π

is evaluated by a Monte Carlo simulation. With the resulting

task covariance matrices Qx,r and Qx,l, a set of random

task frames is generated and the satisfaction of the chance

constraints is investigated. The origins of the admissible task

frames are illustrated in Fig. 3, and the statistics of the chance

constraints evaluated for the task frames are illustrated in

Fig. 4. The bars show the proportion of the generated task

frames that satisfy the chance constraints along the LIMA

(with N = 20). The slight degradations from the expected

98% constraint satisfaction probability can be associated

with nonlinearities, the fusion of the criteria in the objective

function, and the assumption of identical covariance matrices

for both instrument arms.

V. CONCLUSION

In this paper, the planning of robotics-assisted interven-

tions under task uncertainty was addressed. In order to

accommodate more surgeons with different levels of skill

and experience into the planning, it is essential that the plan

accommodates a larger task uncertainty. The ultimate goal of
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Fig. 4. Evaluation of the actual reliability with respect to the task frame
uncertainty using a Monte Carlo simulation.

such a plan is to increase the chance of success by ensuring

that the chances of collisions and joint limit violations remain

sufficiently small. Therefore, the planning was formulated

as a chance-constrained programming problem in terms of

the instrument tip pose uncertainty in the vicinity of the

desired task frame, minimizing the information regarding the

task. To avoid using sampling-based techniques for solving

the resulting stochastic optimization problem, the unscented

transformation was utilized. This transformation yields more

accurate estimation of the statistics of the constraints while

the complexities pertaining to the linearization of the nonlin-

ear constraints are avoided. The efficiency of the proposed

formulation was demonstrated by a case study addressing

optimal planning of the da Vinci robotic system for robotics-

assisted LIMA harvesting in minimally invasive coronary

artery bypass surgery.
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